北海道大学 研究シーズ集

English

ナノテク・材料:30件

1頁の掲載件数 20 50 改頁しない 分野別アイコン凡例
  • ライフサイエンス
  • 情報通信
  • ナノテク・材料
  • ものづくり技術
  • 人文・社会科学
  • エネルギー
  • 環境
  • 観光・まちづくり
  • 北極域
  • 社会基盤
  • 共用機器
  • 銀系化合物を用いる水素の活性化と接触合成反応

    高活性水素イオンの生成触媒の開発とCO2メタネーション反応への利用

    Gin De Ride(銀-Derived Hydride, GDR)は、当研究室が発見した銀系化合物から生成する高活性水素イオンで、一部を低温燃焼させることで熱を供給し、余剰GDRは例えばCH4合成に利用することで、反応が効率化できる。

    • 図1 GDR*生成触媒のイメージ図
      *GDR, Gin De Ride(銀-Derived Hydride)

    • 図2 GDR生成触媒を混合したニッケルアルミナ触媒の二酸化炭素メタネーション活性の例(上は反応器出口ガス濃度、下は熱電対温度)

    研究の内容

     水素の自然発火温度は525℃前後と高く、低温で燃焼させるためには、高活性水素を製造可能な触媒の利用が不可欠である。これまでパラジウムや白金系触媒が用いられているが、供給面や価格面などの不安を抱えている。
     当研究室では、従来の触媒に比べ供給面や価格面で有利な触媒の研究に取り組み、その結果、高活性な水素イオンを生成可能な銀系化合物を発見した。本触媒は、水素を供給すると高い活性を持つ水素イオン“Gin De Ride(銀-Derived Hydride, GDR)”を与えるため、まず低温で水素と酸素を同時供給することにより生成GDRを燃焼させ、次いで発生熱と余剰GDRを利用すれば各種合成反応を効率的に行うことが出来る。
     現在、CO2メタネーション用の触媒との複合化により、低温で反応が進行することを見出している。

  • 光干渉リソグラフィによる微細パターン創成

    空間位相制御によるマスクレスでの自由微細パターン創成

    光干渉リソグラフィに空間位相制御を導入して,マスクレスで自由パターンを転写創成する手法を開発。これまでに,従来の2ビーム干渉では実現困難であった2次元干渉パターンの生成に成功しており,現在パターン転写およびその精度向上に取り組んでいます。

    • 図1

    • 図2

    • 図3

    • 図4

    研究の内容

    半導体露光装置,超精密工作機械や精密計測機に用いられる超精密位置決め機構において位置検出センサとして用いられるリニアスケールでは,マイクロメートル級のピッチを有する回折スケール格子が位置検出の「目盛り」として用いられています。また近年,微細パターンを有する機能性表面に対する需要が様々な分野で高まっています。
    本研究では,空間位相変調したレーザ光の重畳で自在生成する干渉縞の転写で,マスクレス自由パターン創成を狙っています。これまでに,従来の2ビーム干渉では原理的に創成が困難であった2次元干渉パターンの生成に成功しています。

  • 超精密光学式角度センサ

    0.001 arc-second超の高分解能を実現し,回折スケール格子ピッチ評価に援用

    超精密位置決めステージなど,精密移動体の微小角度変位を検出する光学式角度センサを開発しています。レーザオートコリメーション法ベースの角度センサとして世界最高レベル(0.001 arc-second超)の分解能を達成しています。

    • 図1

    • 図2

    • 図3

    • 図4

    研究の内容

    半導体露光装置,超精密工作機械や精密計測機に用いられる超精密位置決め機構においては,ステージ移動中の微小回転運動誤差の影響が無視できません。
    本研究では,これら精密移動体の微小角度変位を高い分解能で検出する,高精度光学式角度センサの開発に取り組んでいます。低ノイズ信号処理回路の開発および光学系の最適化設計により,レーザオートコリメーション法ベースの角度センサとして世界最高レベル(0.001 arc-second超)の分解能を,帯域1 kHzレベルで達成しています。また,この角度センサ技術をもとに,回折スケール格子全長に渡り,位置検出の「目盛り」の揺らぎをピコメートル級分解能で校正する手法を開発中です。位置決め技術の更なる高精度化を狙います。

  • 1粒子解析技術に基づいたセンサー

    エクソソームのスペクトル計測によるがんの識別方法

    ・長さが5 μm以下の微粒子(例えばエクソソームなど)の1粒子解析方法、または、微粒子を利用したセンサーのためのスペクトルデータの生産方法を提供する
    ・微粒子を高感度にスペクトル計測できる基板および計測装置を提供する

    • 【計測基板】

    • 【がんの識別】

    研究の内容

    本研究では、長さが5μm以下の生体微粒子などの測定が可能となる特徴を持ち、エクソソームの他、微粒子状の小さな細菌やウイルスなどが測定対象となります。また微粒子を利用したセンサーのためのスペクトルデータの生産方法を提供することが可能となります。
    例えばエクソソームを測定することで、がんの検出や識別などに活用することが期待されます。
    エクソソームとは細胞から分泌される体液(尿、唾液、血液など)に存在している微粒子で、近年は疾患のバイオマーカーとして注目されています。エクソソームの特徴として以下の特徴があります。
    ・表面分子組成が親細胞に依存している
    ・正常細胞はがん細胞から出てきたエクソソームを取り込むことでがん化する
    ・表面のタンパク質などの違いで、どこの細胞に入るか(がんの転移先)が決まる

  • 高速超親水および滑落性制御型超撥水・超撥油表面の構築

    水が油が、よく濡れる、すぐ滑り落ちる、よくくっつく

    高速で水が濡れ広がる超親水や、水・油をとてもよく弾くけれども表面に吸着していたり、簡単に滑り落ちたりと、滑落性を簡単に制御できる超撥水・超撥油表面を創り出す方法についてご紹介します。

    • 超親水・超撥水・超撥油表面

    • 滑落性が制御できる超撥水表面

    研究の内容

    アノード酸化(陽極酸化)は、金属の表面にさまざまなナノ構造をもつ酸化物を形成する手法です。新規な電解質化学種を用いたアノード酸化により、sub-10 nm(10 nm以下)の直径をもつナノファイバー酸化物を大量に形成する手法を開発しました。ナノファイバーの生成密度は、1 cm2あたり1010本(100億本)オーダーと極めて高密度です。このような高密度ナノファイバーを形成した金属表面が、1秒以下の高速の超親水性や滑落性制御型の超撥水性・超撥油性を発現することを見いだしました。微細パターニング技術を用いて濡れ性の異なる表面を混在させることもできます。

  • 光触媒結晶性酸化チタン薄膜の超高速成膜

    高温熱処理不要な超高速電解成膜技術

    結晶性酸化チタンは光触媒として実用的に重要な酸化物です。一般に高温での熱処理を必要とする結晶性二酸化チタン薄膜を,水溶液中の電解成膜法を用いてわずか数秒以内に各種金属基板上に製膜する技術を開発しました。

    • 成膜した酸化チタン膜の断面TEM写真とUV照射による超親水化を示す写真

    研究の内容

    Al,Zn,Fe,Cuなどの実用金属基板上にTiF62-を含む水溶液からわずか数秒の電解により酸化チタン薄膜を得ることに成功しました。得られた酸化チタン薄膜はアナターゼ結晶性であり,熱処理することなく,光触媒活性を示します。表面の有機物をUV照射で分解し,超親水化するなどの優れた特性を確認しています。この酸化チタン膜には基板元素がドープされることから可視光応答性などの新たな機能発現も期待できます。透明導電膜などへの成膜も可能です。

  • EUVプラズマの診断や制御のための計測技術

    EUVプラズマの電子密度や電子温度をレーザーを用いて詳細に計測および制御する技術。

    • EUV光源のプラズマ構造を計測可能なシステム
      開発。EUV光出力を、プラズマの電子状態から初めて説明可能とした。密度の中空様構造の発見。

    • EUV光源のプラズマ構造を計測するためのシステム
      原理。光(レーザー)を用いた散乱計測である。

    • EUV光源からの光出力を、発光の根源である電子状態まで遡って説明可能とした。

    • 電子状態はプラズマ応用の基礎であるが、測定が困難であり、電子状態まで立ち返った現象理解や改良はなかなか行われない。EUV光源以外にも、電子計測に基づいた様々なプラズマ応用の研究を展開している。

    研究の内容

    EUVプラズマ及び軟X線プラズマは、容易に大光量を達成でき、半導体露光や材料診断に用いられている。一方でその最適化(波長選択性や高効率化)のためには、プラズマの電子状態(電子密度や電子温度)の制御が必要であるが、その計測は従来技術では達成されておらず、電子状態はなかばブラックボックスであった。本技術の特徴は、独自の分光システムを用いたレーザー散乱計測(トムソン散乱法)により、EUVプラズマの詳細な電子密度・温度の計測を可能とした点である。これにより、プラズマが光を発するメカニズムの根源である電子状態を把握した光源開発を可能としている。

    富田 健太郎 准教授 Kentaro Tomita
    博士(工学)
  • 色と導電性の変化で情報表示・記憶する半導体素子

    窓ガラスや鏡がメモリーに?

    「電子カーテン」として注目を浴びているエレクトロクロミック材料を、薄膜トランジスタに組み込み、無色透明⇔黒色の色変化と、絶縁体⇔金属の導電性変化を利用する新しい情報表示・記憶装置を開発しました。窓ガラスや鏡に情報を表示・記憶できます。

    • ゲート-ソース間に電圧印加することで、無色透明絶縁体⇔濃青色金属を
      可逆的に変化させることができます。

    研究の内容

    IoT普及に伴い、パソコンだけでなく、様々な機器がインターネットに接続されたことにより、収集・保存しなければならない情報量が増加し続けています。現在の情報記憶素子は半導体の電気抵抗変化のみを利用していますが、本研究では、電気抵抗変化に加えて、色変化を情報表示・記憶に利用できる素子を開発しました。ガラスやプラスティックなどの基板上に、アモルファスWO3薄膜(膜厚100 nm)/ナノ多孔質ガラス薄膜(300 nm)/多結晶NiO薄膜(50 nm)の積層膜と、透明電極ITO薄膜(20 nm)からなるソース、ドレイン、ゲート電極を備えた、三端子の全固体薄膜トランジスタ構造を作製し、ゲート-ソース間に数ボルトの正電圧を印加するとWO3薄膜が濃青色に変化すると同時に金属になり、負電圧を印加すると無色透明な絶縁体に戻ります。

    太田 裕道 教授 Hiromichi Ohta
    博士(工学)
  • 革新的なアルマイトの創製と機能発現

    表面が変われば、全てが変わる

    アルミニウムの耐食性不働態皮膜として極めて有名な「アルマイト」を革新し、アルミニウムに優れた特性や新しい機能を発現する研究をご紹介します。

    研究の内容

    「アルマイト」とはアルミニウム表面に形成された人工的な不働態皮膜のことであり、およそ100年前に日本で開発されました。私たちの身の回りにはたくさんのアルマイト製品がありますが、私たちの研究グループではアルミニウム表面にアルマイトを形成するための化学物質や形成手法(陽極酸化)を一から見直し、優れた特性や革新的な機能を発現する新しいアルマイト形成法の開発に挑んでいます。具体的には、とても規則的なナノ構造をもつアルマイト、ビッカース硬度Hv = 600以上の硬いアルマイト、酸・塩基性環境や塩化物環境においても高い耐食性をもつアルマイト、ルミネッセンスや構造色を生じて美しく光るアルマイトなどです。

  • 高純度ナトリウムの製造

    電解精製でナトリウム資源の循環を

    大型の二次電池で主に産業用として用いられているナトリウムー硫黄二次電池があります。本研究ではこの電池の使用済みの状態のものから、電池内部に含まれる金属ナトリウムを回収して、これを電解精製し高純度ナトリウムを製造するプロセスを開発しています。

    • 図1 ナトリウム電解精製槽の模型

    • 図2 電極上に析出する粒上の液体ナトリウム

    研究の内容

    本研究は、不純物を含む金属ナトリウムを電解精製によって高純度化するプロセスの開発です。原料となる金属ナトリウムは、使用済みナトリウムー硫黄電池の中から回収したものになります。これを図1の電解槽模型の左上(陽極)に設置し、電流を流す事でナトリウムイオンが電解液に溶解し、ナトリウムのみが右上の高純度ナトリウム(陰極)側に順次析出します。このプロセスは200℃以下で操業が可能になります。この電解で得られた高純度ナトリウムは電池の原料や他の用途としても使うことができる純度です。ナトリウム資源を海外に依存している本邦であるからこそ、この技術が今後広く応用できると考えています。  

  • プラズモンを用いた最先端ナノ光リソグラフィー

    シングルナノメートルの加工分解能を有する
    光リソグラフィー技術

    プラズモン共鳴による光電場の局在を用いれば、微小な領域に光電場を自在に局在化できます。本技術では、プラズモンの高次の共鳴モードの散乱光を利用して数nmの分解能の光リソグラフィー技術を発明しました。

    • プラズモンリソグラフィーにより形成されたフォトレジストナノパターン

    研究の内容

    従来の光リソグラフィーの分解能は波長で決まりますが、本技術はフォトマスクの金属ナノ構造の加工分解能によって決定されます。フォマスクである金属ナノ構造に赤外光を照射することによりシングルナノメートルの分解能でパターンを転写できる技術です。本技術の特徴として、赤外光を照射するだけでマスクパターンの形状をそのまま転写可能であること、近接場光ではなく伝播光を使用しているため高アスペクト比の加工が期待されること、そしてライン&スペースだけではなく、三角形、ナノギャップ、チェインなどあらゆる形状のパターンの作製が可能であることなどが挙げられます。比較的大面積にナノパターンの転写が必要なフォトニック結晶、プラズモン太陽電池、光学素子表面のモスアイ構造形成技術などへも応用が期待されます。

  • 均一系パラジウムナノ粒子触媒による水素化反応

    シスアルケンとアミン類の選択的合成

    医薬、農薬、化成品の原料等として有用なシスアルケンやアミン類をアルキン、有機ニトロ化合物やアジド類の水素化により効率的に合成できる。独自に開発した均一系パラジウムナノ粒子は、溶液として1年以上保存可能で、大気中で容易に取り扱うことができる。

    研究の内容

    酢酸パラジウムをアルキン存在下でカリウムtert-ブトキシドまたは水素化ホウ素ナトリウムで処理することで、均一系のパラジウムナノ粒子が得られることを見いだした(図1)。このナノ粒子は、溶液で1年以上保存可能で、大気中で容易に取り扱うことができる。水素化触媒として優れた性能を示し、アルキン(1)、有機アジド化合物(3)、芳香族ニトロ化合物(5)からシスアルケン(2)、アミン類(4、6)をそれぞれ効率的に合成できる。シスアルケン選択性や官能基許容性(ケトン、アルデヒド、ベンジル位ヒドロキシ基等を損わない)に優れている。触媒活性も極めて高く、基質(原料)の1,000分の1から50,000分の1当量のパラジウムを用いるだけで反応はすみやかに進行する。経済性や利便性に優れており、企業と共同で事業化検討も行っている。

  • 金属材料の組織予測シミュレーション技術の開発

    凝固から固相変態まで

    構造材料や機能材料の製造プロセスでは、凝固、熱処理、塑性加工において様々な材料組織が形成し、その材料組織の特徴が材料の特性を決めています。凝固から固相変態までの一連の材料組織変化を予測するシミュレーション法の開発を行っています。

    研究の内容

    金属材料の凝固、結晶粒成長、拡散固相変態など、製造プロセスで生じる一連の相変態における材料組織の時間変化を予測する手法の開発と応用を行っています。特に、組織形成シミュレーション手法であるフェーズフィールド・モデルの開発に従事し、拡散相変態を世界最高精度で計算するモデルの開発に成功しています。また、実験的アプローチ、分子動力学法による原子論的アプローチ、さらにはデータ同化、機械学習といった情報科学のアプローチを組み合わせて、種々の合金系における材料組織制御に取り組んでいます。超大規模計算によって組織形成の新しい学理を開拓し、実プロセスの最適化につながる成果を得ています。

  • 電子スピン制御の物性定数を解明

    次世代電子デバイスの研究・開発を加速

    さまざまな半導体物性の中でこれまで未解明であった「スピン軌道相互作用」を、InGaAs半導体をベースにしたn型量子井戸構造に対して、ゲート電圧依存性を含めて定量的に明らかにしました。この成果は、次世代スピンデバイス開発のシーズとなります。

    • 図1 スピン回転の模式図。(a)スピンが回転していない、(b)ある向きにスピンが回転する状態、(c)(b)と反対向きにスピンが回転する状態を示している。

    • 図2 電界効果型トランジスタ

    • 図3 本研究に用いた希釈冷凍機

    • 図4 本研究で明らかにしたスピン軌道相互作用係数のゲート電圧依存性。
      (a)-(c)は図1のスピン回転の様子に対応している。

    研究の内容

    既存の半導体デバイスは、電子の「電荷」により動作します。一方で、電子は、「電荷」と共に「スピン」という小さな磁石としての性質を有しています。固体中電子のスピンは状況に応じて、ある向きに揃ったり(図1a)、特定の軸に対して回転したりします(図1bc)。次世代電子デバイスを実現するには、このような電子の「スピン」を半導体デバイス中で如何に制御するかが鍵となります。今回の研究では、インジウム、ガリウム、砒素をベースとした電界効果トランジスタ(図2)を利用し、希釈冷凍機(図3)を用いて実現する極低温(絶対温度20mK)環境で、電気的な測定を行うことにより、電子スピンの制御に必要な「スピン軌道相互作用係数」をはじめて厳密に決定しました(図4)。

  • 新規なスピントロニクス・デバイスの探索および低次元電子ガスのエネルギースペクトラムの理論研究

    省電力デバイスを目指して

    トポロジカル絶縁体やスカーミオンと呼ばれるトポロジーが現象を支配している物質や構造を物性理論を使って研究している。同時に、その過程でこれらのトポロジカル絶縁体やスカーミオンを利用した新規なスピンデバイスの提案と実現を目指して研究しています。

    • 図1:トポロジカル絶縁体のバンド構造

    • 図2: 図1の電子密度の等高線図

    • 図3:Neel-typeのスカーミオンの構造の計算結果

    研究の内容

    現在主流のCMOS素子を性能面と電力面で超えるスピンデバイスを提案し、その性能を物性理論で解析する研究をしています。この研究によって、CMOSデバイスを超える性能を持ちながら、省電力なデバイスを創生することが主な研究目的です。普段は、新規なスピンデバイスの性能を計算するために、場の量子論や相対論を用いてスピン伝導率などを計算しています。現在、研究している対象はトポロジカル絶縁体とスカーミオンですが、トポロジカル絶縁体はバルクでは絶縁体であるが、表面のみ自発的にスピン流が流れる物質であるので、上手くデバイスに応用できれば、トポロジカル絶縁体自体は無散逸なので超省電力のデバイスの作製が可能になります。またスカーミオンは磁性体に発生する特異な渦であり、これも電流駆動することでスイッチの役割を果たすことが期待されます。

    近藤 憲治 准教授 Kenji Kondo
    博士(工学)
  • 氷結晶表面の分子レベル光学直接観察

    高さ方向には原子分解能を有する光学顕微鏡の開発とそれを用いた氷結晶表面のその場観察

    株式会社オリンパスエンジニアリングと共同で、高さ方向には原子分解能を有する光学顕微鏡を開発した。現在それを用いて、氷結晶が成長・昇華・融解する機構を、分子レベルで明らかにしようとしている。

    • 過飽和水蒸気から成長する氷結晶(雪と同じ).結晶上の丸い島は,水1分子高さのステップを示す.

    研究の内容

    平らな面で囲まれた結晶は、材料の種類によらず層状に成長する。そのため、結晶が成長するメカニズムやカイネティクスを明らかにするためには、その成長端(一般に「単位ステップ」と呼ばれる) がどのような挙動を示すのかを直接観察する必要がある。しかし、氷結晶の場合には、原子間力顕微鏡や電子顕微鏡等、通常固体表面を分子レベルで観察する際に用いられる顕微鏡を適用することができない。この困難を克服するべく、平らな結晶表面上の原子・分子高さのステップを、非接触・非破壊で直接観察できる光学顕微鏡を開発した。現在これを用いて、氷結晶の成長機構や、ゼロ度以下で氷結晶表面が融ける現象(表面融解と呼ばれる)を、分子レベルで明らかにする研究に取り組んでいる。氷結晶以外にも、結晶表面上を原子・分子高さレベルで調べる研究を広く展開している。

    佐﨑 元 教授 Gen Sazaki
    博士(工学)
  • ソノプラズマ発生装置

    音響キャビテーションを定位置に高効率で発生させる方法

    超音波によって水中に駆動される音響キャビテーションが崩壊するとき、気泡の内部は高温・高圧状態となり、プラズマ化する(ソノプラズマ)。音響キャビテーションを定位置に高効率で発生させる方法を見出し、プラズマ応用技術としての展開を図る。

    • 音響キャビテーションを光散乱で観察した様子。(a)の通常の場合では音響キャビテーションは観察されないが、(b)のようにパンチングメタル板を挿入すると定在化した音響キャビテーションが高確率に発生する。

    • 塩化金酸水溶液からの金ナノ粒子の生成をパンチングメタル板の挿入により高速化した例

    研究の内容

    液体中で生成されるプラズマは、ナノテクノロジー、環境工学、および医療工学の観点から高い関心を集めているが、プラズマの発生に高電圧を必要とすることが障害となる場合がある。一方、超音波工学の分野では、音響キャビテーションが崩壊する瞬間に気泡の内部がプラズマ化することが知られていた。我々は、超音波が印加された液中にパンチングメタル板を挿入するという極めて簡単な方法により、位置の固定が困難な音響キャビテーションを定在化させ、高効率に発生させることに成功した。高電圧を用いない液中プラズマ生成法としてユニークであるとの評価を受けている。現在は、本方式のメカニズムを解明し、大型装置を設計するための指針を得ることに注力しているが、今後は、新しいプラズマ応用技術としての様々な展開を図りたいと考えている。

  • ポリスチレン架橋ビスホスフィン配位子による
    高活性触媒の創製

    高分子担体を反応場とする金属錯体触媒の設計と効率的合成プロセスの開発

    高分子担持金属触媒の創製に有効なポリスチレン架橋ビスホスフィン配位子を開発しました。高分子トポロジーの効果により、金属錯体の不均化や金属凝集による触媒の不活性化を抑制することができます。第一遷移系列金属触媒の配位子として特に有効です。

    研究の内容

    不均一系(不溶性)金属触媒は、反応混合物からの分離が容易で再利用性に優れた環境負荷の少ない有機合成手法ですが、対応する均一系(可溶性)触媒と比較して、触媒活性が低下することが問題です。私たちは、高分子鎖のトポロジー制御に基づき、高活性なモノキレート型単核遷移金属錯体の発生に有効なポリスチレン架橋ビスホスフィン配位子PS-DPPBzを開発しました。塩化アリールのアミノ化カップリングやエステル-アゾールカップリング等のNi触媒反応などの効率を著しく向上させ、既存触媒では適用困難であった基質に対しても有効です。本触媒は、ろ過による分離や再利用も可能なことから、産業利用が期待されます。

  • 耐高温材料の微細加工による赤外メタマテリアル

    中~遠赤外線を操る材料・デバイスの開発

    中~遠赤外線の波長以下のパターンを持つヒーターや回折格子を作るとこれら電磁波を制御するデバイスを作れることが期待されます。我々は金属炭化物や酸化物の薄膜・積層・微細構造の作製法の開発と素子特性を研究しています。

    • 耐熱材料合成用高周波加熱炉
      (常用2700℃、短時間3000℃)

    • 耐熱材料の微細加工の例

    研究の内容

    電磁波の波長以下のスケールで微細加工された物質は電磁波の反射・透過を制御する働きがあります(メタマテリアルと呼ばれる)。3μm~1000μmの波長をもつ中~遠赤外線は熱の輻射にかかわる電磁波であるとともに、分子振動を励起させることができるため、分子の検出に使うことができます。熱にかかわる材料なので、耐熱性を持たせることにより他では実現できない応用が可能になります。我々は金属炭化物や酸化物などの様々な物性を持つ耐熱性材料に対するプロセス技術を研究するとともに、これら材料の赤外域での基礎物性を測定し、メタマテリアル設計につなげます。中~遠赤外線に対するメタマテリアルの作製により、分子検出用の狭線幅の中赤外発光素子や、輻射熱を制御する材料の作製を目指しています。

  • 電気化学応答性有機色素

    エレクトロクロミズムから多重応答へ(蛍光、旋光性)

    色調の制御が容易なカチオン性有機色素を基本として、蛍光、旋光性(円二色性)などの多重応答が可能な物質群を提供します。本技術では還元種の分解過程が抑制される工夫が施され、また酸化種と還元種を混合しても交換が起こらないという双安定性を持ちます。

    研究の内容

    エレクトロクロミズム系は、外部からの電位の変化に対応して色調が変化する化合物の総称です。発色・消色の可逆的な表示が可能な材料として、スマートウインドウなどの調光材料や電子ペーパーなどでの表示機能という観点からも注目されています。色調以外に、蛍光、旋光性(円二色性)なども変化する物質では、用途に応じたテーラーメードな応答が可能となります。
    本技術では、色調の制御が容易なカチオン性有機色素を基本とした、多重応答が可能な物質群を提供します。カチオン性色素の還元種は一般に反応活性で、応答の繰返性は低くなりますが、本技術ではカチオン部位を2つ組み込むことで、還元種の分解過程が抑制されています。また、酸化種と還元種を混合しても交換が起こらないという双安定性は、高密度記録材料への応用を可能とするものです。