北海道大学 研究シーズ集

English

ナノテク・材料:37件

1頁の掲載件数 20 50 改頁しない 分野別アイコン凡例
  • ライフサイエンス
  • 情報通信
  • ナノテク・材料
  • ものづくり技術
  • 人文・社会科学
  • エネルギー
  • 環境
  • 観光・まちづくり
  • 北極域
  • 社会基盤
  • 共用機器
  • NEW ポータブルな液体クロマトグラフ(化学分析装置)

    検査室から持ち出せる化学分析装置

    液体クロマトグラフはサイズおよび重量が大きいため、実験室での使用に限定され、試料の採取場所での分析や小規模な実験室での分析は困難でした。そこで、構成要素を根本から小型化することに取り組み、超小型・超軽量装置の開発に成功しました。

    研究の内容

    ・液体クロマトグラフ法(HPLC)
    各成分は、カラム内で充填剤との相互作用の程度の違いで分離されます。分離するため、成分どうしの干渉なしに分析できます。溶出時間で成分が特定でき、検出信号の強さから濃度を決定できます。

    ・ハンディーポータブルタイプ
    使用のつど収納でき、限られたスペースを有効活用
    低溶媒使用量で低コスト 現場での取扱いも容易
    シンプルな構造でセッティングとメンテナンスが容易
    極微量の試料導入量により希少サンプルの分析に最適
    入手容易な乾電池が使用可能
    従来スペースに複数台設置して分析効率を向上

    ・コンパクトオールインワンタイプ
    カラム(チップ)と検出器(ブロック)をモジュール化。各種検出法に対応し、交換可能。

  • NEW 超低価格のオンサイト検査システムの開発

    どこでも誰でも検査が可能な検査チップ

    どこでも誰でも検査が可能な検査チップの開発を行っています。紙を基材にすることで、材料コストだけでなく、廃棄コストも低減することができます。検出器にスマートフォンを利用することで、超低価格のオンサイト検査システムが実現できます。

    研究の内容

    ・検査チップとアプリを開発中
    紙製検査チップとスマートフォンで簡便ながら精度良い分析が可能

    ・紙製検査チップ(ペーパーマイクロチップ)
    軽量・薄型の検査チップ
    スマホが測定器だから導入費はゼロ
    熟練がいらない簡単な操作
    スマホアプリが高精度で検査
    検査後の処分も簡単

  • NEW ブロック型生分解性ポリエステルの微生物合成

    微生物を利用してバイオマスから合成される新規生分解性プラスチック

    グリコール酸ユニットなどの非天然ユニットを含むポリマーの合成系を独自に開発しました。加えて、これまで不可能であったモノマー配列が制御されたブロック共重合体を合成することにも成功しています。

    研究の内容

    ある種の微生物は再生可能なバイオマスを原料として、細胞内にポリエステルを合成蓄積します。このポリエステルは生分解性プラスチックとして利用可能ですが、これまで物性の制御が難しいのが難点でした。我々は、人工的に改変したポリマー合成系を用いて、様々な非天然ポリマーの生合成に成功しています。これらのポリマーは、天然型ポリマーでは実現不可能な物性も発揮できます。生分解性の評価はまだ完了していませんが、典型的には、土中で3か月程度で分解されます。生分解性に加えて、生体吸収性の発揮も期待できます。

  • NEW 道産ダケカンバ製硬式野球バットの打撃性能評価

    道総研林産試験場(旭川)の試作した道産ダケカンバ硬式バットの品質を広くアピールし消費市場を獲得するために、工学的な数値評価を確立して材質の異なるバットの性能を差別化し、従来材料と合わせてカンバ材バットを消費者の選択肢として提供する。

    研究の内容

    (解決すべき課題) かつて野球バットの木材は、道産アオダモがシェアの大半を占めていたが、現在は資源が枯渇し、北米産メイプルの輸入に依存した結果、国内バット製造業が衰退傾向に陥った。

    (方法) 国産材バットの普及を目指し、ダケカンバ製バットの用具としての機能を工学的に数値化して外材のパーチ、メイプル、アッシュなどと差別化する。選手のバット素材の選択肢を拡げ、選択のための判断基準を提供し、市場を活性化する。

    (意義) バットの消費で安定した流通量を確保し、アオダモ等、その他の樹種と合わせて計画的な植林と伐採サイクルを確立し、林業と地元製材・加工業の持続可能な活性化を図る。森林再生により二酸化炭素吸収と炭素固定を増進し、我が国のpostコロナ社会の優先課題であるグリーン成長戦略に役立ちたい。

  • NEW 発光性希土類錯体を用いた農林水産事業の支援

    波長変換フィルムで農作物成長を促進

    農作物成長促進に効果的な強発光性の希土類錯体(発光効率:世界トップ)を開発。その発光体を透明シートに塗った光波長変換フィルム(紫外光→可視光)の作製に成功。

    研究の内容

    紫外光を効率よく吸収し、赤色領域の強発光する希土類錯体を開発しました。この分子を塗り込んだ光波長変換フィルムは太陽光の赤色部分(600nm付近)を増強することができます。
    この希土類錯体は可視光領域は光吸収がなく、農作物の光合成の鍵となるクロロフィル分子(赤色光を吸収)へ光を効果的に当てることができます。
    ● 太陽光の可視光領域をさえぎることがないため、農作物育成に応用した場合、日照時間を増やす効果があります。(特に冬期は効果的)
    ● 光変換の波長は赤色光の他に、「緑色光」「白色(波長混合)」「近赤外光」 に変換も可能です。  紫外線カットによる遮熱効果も期待できます。
    ● 発光色が温度によって変化するフィルムも作ることができます。LEDと組み合わせることもできます。

    長谷川 靖哉 教授 Yasuchika Hasegawa
    工学研究院 応用化学部門 機能材料化学分野
  • NEW 寒冷地農業施設の最適な維持管理のための腐食と防食技術

    積雪寒冷地に着目した、構造物や機器の腐食・防食の研究

    北海道の特徴は、積雪寒冷地であることです。寒さと雪に着目した大型施設や機器の腐食状況の把握、基礎研究からの腐食状況解析などを行っています。

    研究の内容

    ・積雪寒冷地の金属材料の腐食
    雪が降る低温においても金属材料が激しく腐食する理由として、雪が溶けることによりできる塩分を含む水膜があげられます。
    そこで、水膜の厚さや塩分濃度を変えて腐食試験を行っています。右図は、水膜が薄くなると、氷点下でも金属材料表面に多くの酸素が供給されることを示してます。このことは、氷点下でも日光で雪がとけると激しく腐食することを意味しています。
    ・積雪寒冷地の曝露試験
    北海道内数カ所で曝露試験を行い、雪の影響でどの程度金属材料が腐食するのかを調査しています。
    海からの飛来海塩量の測定も実施しており、札幌近郊では、冬季に飛来海塩量は夏の数倍に増えていることが分かりました。大型鋼製構造物に温度センサーを設置して測定した結果、気温が氷点下でも日光があたると十度以上になることがわかりました。

    坂入 正敏 准教授 Sakairi Masatoshi
    工学研究院 材料科学部門 マテリアル設計分野
  • NEW H2Oの相変化制御と応用

    水を制御して、生命を制御する

    トレハロースなどの二糖類を使った細胞の凍結保存実験を行い、氷晶形成の制御という観点からそのメカニズムを解明し、より多くの細胞の凍結保存技術の開発に資する。

    研究の内容

    凍結過程を上手に制御すると、細胞を生きたまま凍結することができる。つまり、「生命の時を止める」ことができるのだ。この「凍結保存」技術は、すでに畜産業や水産業で導入されているが、そのメカニズムは科学的に解明できているわけではなく、需要は高いが凍結保存できない細胞種は数多く存在する。私たちはこの「細胞の凍結保存メカニズム」を、その主要成分である水の相変化を制御するという視点から解明を試みている。

  • 銀系化合物を用いる水素の活性化と接触合成反応

    高活性水素イオンの生成触媒の開発とCO2メタネーション反応への利用

    Gin De Ride(銀-Derived Hydride, GDR)は、当研究室が発見した銀系化合物から生成する高活性水素イオンで、一部を低温燃焼させることで熱を供給し、余剰GDRは例えばCH4合成に利用することで、反応が効率化できる。

    • 図1 GDR*生成触媒のイメージ図
      *GDR, Gin De Ride(銀-Derived Hydride)

    • 図2 GDR生成触媒を混合したニッケルアルミナ触媒の二酸化炭素メタネーション活性の例(上は反応器出口ガス濃度、下は熱電対温度)

    研究の内容

     水素の自然発火温度は525℃前後と高く、低温で燃焼させるためには、高活性水素を製造可能な触媒の利用が不可欠である。これまでパラジウムや白金系触媒が用いられているが、供給面や価格面などの不安を抱えている。
     当研究室では、従来の触媒に比べ供給面や価格面で有利な触媒の研究に取り組み、その結果、高活性な水素イオンを生成可能な銀系化合物を発見した。本触媒は、水素を供給すると高い活性を持つ水素イオン“Gin De Ride(銀-Derived Hydride, GDR)”を与えるため、まず低温で水素と酸素を同時供給することにより生成GDRを燃焼させ、次いで発生熱と余剰GDRを利用すれば各種合成反応を効率的に行うことが出来る。
     現在、CO2メタネーション用の触媒との複合化により、低温で反応が進行することを見出している。

  • 光干渉リソグラフィによる微細パターン創成

    空間位相制御によるマスクレスでの自由微細パターン創成

    光干渉リソグラフィに空間位相制御を導入して,マスクレスで自由パターンを転写創成する手法を開発。これまでに,従来の2ビーム干渉では実現困難であった2次元干渉パターンの生成に成功しており,現在パターン転写およびその精度向上に取り組んでいます。

    • 図1

    • 図2

    • 図3

    • 図4

    研究の内容

    半導体露光装置,超精密工作機械や精密計測機に用いられる超精密位置決め機構において位置検出センサとして用いられるリニアスケールでは,マイクロメートル級のピッチを有する回折スケール格子が位置検出の「目盛り」として用いられています。また近年,微細パターンを有する機能性表面に対する需要が様々な分野で高まっています。
    本研究では,空間位相変調したレーザ光の重畳で自在生成する干渉縞の転写で,マスクレス自由パターン創成を狙っています。これまでに,従来の2ビーム干渉では原理的に創成が困難であった2次元干渉パターンの生成に成功しています。

  • 超精密光学式角度センサ

    0.001 arc-second超の高分解能を実現し,回折スケール格子ピッチ評価に援用

    超精密位置決めステージなど,精密移動体の微小角度変位を検出する光学式角度センサを開発しています。レーザオートコリメーション法ベースの角度センサとして世界最高レベル(0.001 arc-second超)の分解能を達成しています。

    • 図1

    • 図2

    • 図3

    • 図4

    研究の内容

    半導体露光装置,超精密工作機械や精密計測機に用いられる超精密位置決め機構においては,ステージ移動中の微小回転運動誤差の影響が無視できません。
    本研究では,これら精密移動体の微小角度変位を高い分解能で検出する,高精度光学式角度センサの開発に取り組んでいます。低ノイズ信号処理回路の開発および光学系の最適化設計により,レーザオートコリメーション法ベースの角度センサとして世界最高レベル(0.001 arc-second超)の分解能を,帯域1 kHzレベルで達成しています。また,この角度センサ技術をもとに,回折スケール格子全長に渡り,位置検出の「目盛り」の揺らぎをピコメートル級分解能で校正する手法を開発中です。位置決め技術の更なる高精度化を狙います。

  • 1粒子解析技術に基づいたセンサー

    エクソソームのスペクトル計測によるがんの識別方法

    ・長さが5 μm以下の微粒子(例えばエクソソームなど)の1粒子解析方法、または、微粒子を利用したセンサーのためのスペクトルデータの生産方法を提供する
    ・微粒子を高感度にスペクトル計測できる基板および計測装置を提供する

    • 【計測基板】

    • 【がんの識別】

    研究の内容

    本研究では、長さが5μm以下の生体微粒子などの測定が可能となる特徴を持ち、エクソソームの他、微粒子状の小さな細菌やウイルスなどが測定対象となります。また微粒子を利用したセンサーのためのスペクトルデータの生産方法を提供することが可能となります。
    例えばエクソソームを測定することで、がんの検出や識別などに活用することが期待されます。
    エクソソームとは細胞から分泌される体液(尿、唾液、血液など)に存在している微粒子で、近年は疾患のバイオマーカーとして注目されています。エクソソームの特徴として以下の特徴があります。
    ・表面分子組成が親細胞に依存している
    ・正常細胞はがん細胞から出てきたエクソソームを取り込むことでがん化する
    ・表面のタンパク質などの違いで、どこの細胞に入るか(がんの転移先)が決まる

  • 高速超親水および滑落性制御型超撥水・超撥油表面の構築

    水が油が、よく濡れる、すぐ滑り落ちる、よくくっつく

    高速で水が濡れ広がる超親水や、水・油をとてもよく弾くけれども表面に吸着していたり、簡単に滑り落ちたりと、滑落性を簡単に制御できる超撥水・超撥油表面を創り出す方法についてご紹介します。

    • 超親水・超撥水・超撥油表面

    • 滑落性が制御できる超撥水表面

    研究の内容

    アノード酸化(陽極酸化)は、金属の表面にさまざまなナノ構造をもつ酸化物を形成する手法です。新規な電解質化学種を用いたアノード酸化により、sub-10 nm(10 nm以下)の直径をもつナノファイバー酸化物を大量に形成する手法を開発しました。ナノファイバーの生成密度は、1 cm2あたり1010本(100億本)オーダーと極めて高密度です。このような高密度ナノファイバーを形成した金属表面が、1秒以下の高速の超親水性や滑落性制御型の超撥水性・超撥油性を発現することを見いだしました。微細パターニング技術を用いて濡れ性の異なる表面を混在させることもできます。

  • 光触媒結晶性酸化チタン薄膜の超高速成膜

    高温熱処理不要な超高速電解成膜技術

    結晶性酸化チタンは光触媒として実用的に重要な酸化物です。一般に高温での熱処理を必要とする結晶性二酸化チタン薄膜を,水溶液中の電解成膜法を用いてわずか数秒以内に各種金属基板上に製膜する技術を開発しました。

    • 成膜した酸化チタン膜の断面TEM写真とUV照射による超親水化を示す写真

    研究の内容

    Al,Zn,Fe,Cuなどの実用金属基板上にTiF62-を含む水溶液からわずか数秒の電解により酸化チタン薄膜を得ることに成功しました。得られた酸化チタン薄膜はアナターゼ結晶性であり,熱処理することなく,光触媒活性を示します。表面の有機物をUV照射で分解し,超親水化するなどの優れた特性を確認しています。この酸化チタン膜には基板元素がドープされることから可視光応答性などの新たな機能発現も期待できます。透明導電膜などへの成膜も可能です。

  • EUVプラズマの診断や制御のための計測技術

    EUVプラズマの電子密度や電子温度をレーザーを用いて詳細に計測および制御する技術。

    • EUV光源のプラズマ構造を計測可能なシステム
      開発。EUV光出力を、プラズマの電子状態から初めて説明可能とした。密度の中空様構造の発見。

    • EUV光源のプラズマ構造を計測するためのシステム
      原理。光(レーザー)を用いた散乱計測である。

    • EUV光源からの光出力を、発光の根源である電子状態まで遡って説明可能とした。

    • 電子状態はプラズマ応用の基礎であるが、測定が困難であり、電子状態まで立ち返った現象理解や改良はなかなか行われない。EUV光源以外にも、電子計測に基づいた様々なプラズマ応用の研究を展開している。

    研究の内容

    EUVプラズマ及び軟X線プラズマは、容易に大光量を達成でき、半導体露光や材料診断に用いられている。一方でその最適化(波長選択性や高効率化)のためには、プラズマの電子状態(電子密度や電子温度)の制御が必要であるが、その計測は従来技術では達成されておらず、電子状態はなかばブラックボックスであった。本技術の特徴は、独自の分光システムを用いたレーザー散乱計測(トムソン散乱法)により、EUVプラズマの詳細な電子密度・温度の計測を可能とした点である。これにより、プラズマが光を発するメカニズムの根源である電子状態を把握した光源開発を可能としている。

    富田 健太郎 准教授 Kentaro Tomita
    博士(工学)
  • 色と導電性の変化で情報表示・記憶する半導体素子

    窓ガラスや鏡がメモリーに?

    「電子カーテン」として注目を浴びているエレクトロクロミック材料を、薄膜トランジスタに組み込み、無色透明⇔黒色の色変化と、絶縁体⇔金属の導電性変化を利用する新しい情報表示・記憶装置を開発しました。窓ガラスや鏡に情報を表示・記憶できます。

    • ゲート-ソース間に電圧印加することで、無色透明絶縁体⇔濃青色金属を
      可逆的に変化させることができます。

    研究の内容

    IoT普及に伴い、パソコンだけでなく、様々な機器がインターネットに接続されたことにより、収集・保存しなければならない情報量が増加し続けています。現在の情報記憶素子は半導体の電気抵抗変化のみを利用していますが、本研究では、電気抵抗変化に加えて、色変化を情報表示・記憶に利用できる素子を開発しました。ガラスやプラスティックなどの基板上に、アモルファスWO3薄膜(膜厚100 nm)/ナノ多孔質ガラス薄膜(300 nm)/多結晶NiO薄膜(50 nm)の積層膜と、透明電極ITO薄膜(20 nm)からなるソース、ドレイン、ゲート電極を備えた、三端子の全固体薄膜トランジスタ構造を作製し、ゲート-ソース間に数ボルトの正電圧を印加するとWO3薄膜が濃青色に変化すると同時に金属になり、負電圧を印加すると無色透明な絶縁体に戻ります。

  • 革新的なアルマイトの創製と機能発現

    表面が変われば、全てが変わる

    アルミニウムの耐食性不働態皮膜として極めて有名な「アルマイト」を革新し、アルミニウムに優れた特性や新しい機能を発現する研究をご紹介します。

    研究の内容

    「アルマイト」とはアルミニウム表面に形成された人工的な不働態皮膜のことであり、およそ100年前に日本で開発されました。私たちの身の回りにはたくさんのアルマイト製品がありますが、私たちの研究グループではアルミニウム表面にアルマイトを形成するための化学物質や形成手法(陽極酸化)を一から見直し、優れた特性や革新的な機能を発現する新しいアルマイト形成法の開発に挑んでいます。具体的には、とても規則的なナノ構造をもつアルマイト、ビッカース硬度Hv = 600以上の硬いアルマイト、酸・塩基性環境や塩化物環境においても高い耐食性をもつアルマイト、ルミネッセンスや構造色を生じて美しく光るアルマイトなどです。

  • 高純度ナトリウムの製造

    電解精製でナトリウム資源の循環を

    大型の二次電池で主に産業用として用いられているナトリウムー硫黄二次電池があります。本研究ではこの電池の使用済みの状態のものから、電池内部に含まれる金属ナトリウムを回収して、これを電解精製し高純度ナトリウムを製造するプロセスを開発しています。

    • 図1 ナトリウム電解精製槽の模型

    • 図2 電極上に析出する粒上の液体ナトリウム

    研究の内容

    本研究は、不純物を含む金属ナトリウムを電解精製によって高純度化するプロセスの開発です。原料となる金属ナトリウムは、使用済みナトリウムー硫黄電池の中から回収したものになります。これを図1の電解槽模型の左上(陽極)に設置し、電流を流す事でナトリウムイオンが電解液に溶解し、ナトリウムのみが右上の高純度ナトリウム(陰極)側に順次析出します。このプロセスは200℃以下で操業が可能になります。この電解で得られた高純度ナトリウムは電池の原料や他の用途としても使うことができる純度です。ナトリウム資源を海外に依存している本邦であるからこそ、この技術が今後広く応用できると考えています。  

  • プラズモンを用いた最先端ナノ光リソグラフィー

    シングルナノメートルの加工分解能を有する
    光リソグラフィー技術

    プラズモン共鳴による光電場の局在を用いれば、微小な領域に光電場を自在に局在化できます。本技術では、プラズモンの高次の共鳴モードの散乱光を利用して数nmの分解能の光リソグラフィー技術を発明しました。

    • プラズモンリソグラフィーにより形成されたフォトレジストナノパターン

    研究の内容

    従来の光リソグラフィーの分解能は波長で決まりますが、本技術はフォトマスクの金属ナノ構造の加工分解能によって決定されます。フォマスクである金属ナノ構造に赤外光を照射することによりシングルナノメートルの分解能でパターンを転写できる技術です。本技術の特徴として、赤外光を照射するだけでマスクパターンの形状をそのまま転写可能であること、近接場光ではなく伝播光を使用しているため高アスペクト比の加工が期待されること、そしてライン&スペースだけではなく、三角形、ナノギャップ、チェインなどあらゆる形状のパターンの作製が可能であることなどが挙げられます。比較的大面積にナノパターンの転写が必要なフォトニック結晶、プラズモン太陽電池、光学素子表面のモスアイ構造形成技術などへも応用が期待されます。

  • 均一系パラジウムナノ粒子触媒による水素化反応

    シスアルケンとアミン類の選択的合成

    医薬、農薬、化成品の原料等として有用なシスアルケンやアミン類をアルキン、有機ニトロ化合物やアジド類の水素化により効率的に合成できる。独自に開発した均一系パラジウムナノ粒子は、溶液として1年以上保存可能で、大気中で容易に取り扱うことができる。

    研究の内容

    酢酸パラジウムをアルキン存在下でカリウムtert-ブトキシドまたは水素化ホウ素ナトリウムで処理することで、均一系のパラジウムナノ粒子が得られることを見いだした(図1)。このナノ粒子は、溶液で1年以上保存可能で、大気中で容易に取り扱うことができる。水素化触媒として優れた性能を示し、アルキン(1)、有機アジド化合物(3)、芳香族ニトロ化合物(5)からシスアルケン(2)、アミン類(4、6)をそれぞれ効率的に合成できる。シスアルケン選択性や官能基許容性(ケトン、アルデヒド、ベンジル位ヒドロキシ基等を損わない)に優れている。触媒活性も極めて高く、基質(原料)の1,000分の1から50,000分の1当量のパラジウムを用いるだけで反応はすみやかに進行する。経済性や利便性に優れており、企業と共同で事業化検討も行っている。

  • 金属材料の組織予測シミュレーション技術の開発

    凝固から固相変態まで

    構造材料や機能材料の製造プロセスでは、凝固、熱処理、塑性加工において様々な材料組織が形成し、その材料組織の特徴が材料の特性を決めています。凝固から固相変態までの一連の材料組織変化を予測するシミュレーション法の開発を行っています。

    研究の内容

    金属材料の凝固、結晶粒成長、拡散固相変態など、製造プロセスで生じる一連の相変態における材料組織の時間変化を予測する手法の開発と応用を行っています。特に、組織形成シミュレーション手法であるフェーズフィールド・モデルの開発に従事し、拡散相変態を世界最高精度で計算するモデルの開発に成功しています。また、実験的アプローチ、分子動力学法による原子論的アプローチ、さらにはデータ同化、機械学習といった情報科学のアプローチを組み合わせて、種々の合金系における材料組織制御に取り組んでいます。超大規模計算によって組織形成の新しい学理を開拓し、実プロセスの最適化につながる成果を得ています。