Hokkaido University Research Profiles

Japanese

AI: 4

Numbers of lines 20 50 No Page Break Theme Icons
  • Life Sciences
  • Information and Communication
  • Nanotechnology / Materials
  • Manufacturing Technology
  • Human and Social Sciences
  • Energy
  • Environment
  • Tourism / Community development
  • Arctic Research
  • Social Infrastructure
  • Open Facilities
  • An Idea-supporting Multimedia Search System

    An information retrieval system that organically links images, video and other data to help searchers find inspiration and ideas.

    The idea-supporting multimedia search system organically links unstructured data such as images, music and video, extracts inherent similarities and effectively presents them to searchers to help them find ideas and inspiration.

    Research

    We have succeeded in establishing associations and similarities between different media, and developed an associative search scheme that takes ambiguity of multimedia information into consideration (fused search). We have also realized a new search engine and interface by quickly introducing modeling of personal preferences through user networks and visualization of similarities in preferences through user interfaces (personal adaptive search). Use of the search engine and interface enables a completely new search that effectively utilizes the polysemy and ambiguity inherent in multimedia contents.

  • Event Information Recommendation System

    A system that collects data from a few weeks before an event to the day of the event and recommends appropriate event information.

    Although event information was only valid for a short time and it was hard to handle it with conventional information recommendation technology, we have developed a flexible recommendation method by combining multiple factors such as user interest and geographic characteristics.

    Research

    The system estimates the genres and information sources that a user prefers based on the user’s past information browsing history, and assesses the event information that the target user is interested in by referring to the browsing trends of users with similar interests. It also takes into account the geographic characteristics of the user and finally presents the information to him/her. The timing of information distribution is adjusted throughout the system so that the overall system performance can be improved.

  • Multimedia Artificial Intelligence Technology Reaching Social Implementation

    Approaching the practical application of AI technology through industry-university collaborative research!

    With this research, we are developing artificial intelligence technology for multimedia data, mainly images, video, music, and audio. We are handling data related to medical images, social infrastructure data, materials science and other fields, mainly through industry-university collaborative research.

    Research

    We are not only conducting the world's most advanced artificial intelligence research, but also promoting research in interdisciplinary areas and taking on the challenge of solving real-world problems. Specifically, in medical imaging research, we have collaborated with many medical institutions in Japan to build AI technology that surpasses human diagnostic accuracy. In medical and civil engineering research, we have built Explainable AI (XAI), which not only enables learning of small amounts of data, a challenge in AI research, but also enables explanations of judgment results, making the technology usable in the real world. In recent years, we have also developed human-centric AI technology that can make decisions like humans by introducing information strongly related to human interests, such as human brain activity and eye gaze data, into the AI learning process.

  • Rheumatoid AI Diagnostic Research

    Simple photographic assessment of joint space narrowing

    We will attempt to develop a consulting system that provides objective and detailed quantitative analysis information on destructive joint changes in rheumatoid arthritis patients. The image analysis will be measured based on changes in X-ray images over time using a program we had developed, and the information will be provided to research and clinical institutions in Japan and overseas.

    Research

    We have been developing and validating software to objectively measure the progression of joint space narrowing on plain x-rays. The latest software, using our original temporal subtraction and contour extraction techniques, is capable of displaying changes (in square millimeters) in the area of the joint space of the target limb.
    On the other hand, even from a global perspective, it is difficult to automatically detect the progression of joint space narrowing on plain x-rays using software, and the process still partially relies on manual operation, making it impossible to perform measurement at individual hospitals or clinics. Therefore, the purpose of this study is to establish an internet-based consulting system for quantitative analysis of destructive changes due to rheumatoid arthritis that can meet the needs of domestic and international clients who lead clinical trials and clinical research.