PID controller: 1
Life Sciences
Information and Communication
Nanotechnology / Materials
Manufacturing Technology
Human and Social Sciences
Energy
Environment
Tourism / Community development
Arctic Research
Social Infrastructure
Open Facilities
-
Nonlinear Compensator That Can Be Implemented Without Sensors
Nonlinear compensator that can easily be added to PID control systems
Currently, PID control is used as the main control method in industry, but the PID control technique has a problem that the control accuracy deteriorates due to the influence of nonlinear terms such as friction and gravity. We have proposed a nonlinear compensator that can easily be added to PID controllers.
Research
Digital acceleration control (DAC) is a robust control technique for systems with nonlinear terms and modeling errors that are difficult to model. DAC is a very effective controller, but it cannot perform position control by itself because it controls the target acceleration value. Therefore, we have combined DAC with a general PID control system. This PID-DAC combined control system allows both robust position control and acceleration control. In addition, as a new nonlinear compensator that can easily be added to PID controllers without sensors, we propose two controllers: the PID-DA0 control system, which sets the target acceleration value of the control object to zero, and the PID-DJ0 control system, which sets the target acceleration value to zero. Both controllers can easily be added to existing PID controllers without additional sensors, so they have the great advantage of improving system performance sensorless.
Takanori Emaru Associate Professor