Porous structures: 1
Life Sciences
Information and Communication
Nanotechnology / Materials
Manufacturing Technology
Human and Social Sciences
Energy
Environment
Tourism / Community development
Arctic Research
Social Infrastructure
Open Facilities
-
A Novel Porous Structure with High Mechanical Performance for Additive Manufacturing
Biomimetic design based on bone biomechanics
A novel three-dimensional (3D) printed porous structure with high mechanical performance is designed biomimetically based on the insights of bone biomechanics. The resulting structure might be lightweight and mechanically isotropic with suppressed fracture progression and high energy absorption.
Research
In general, porous structures with repeating units, such as diamond lattices, suffer from mechanical issues, such as fracture development, low energy absorption, and mechanical anisotropy due to these repeating units. To address these issues, we develop a novel porous structure with high mechanical performance for additive manufacturing. The structure is designed biomimetically based on the insights of bone biomechanics. It has a framework made up of 3D isotropically interconnected beams. Here, the beam lengths and bifurcation counts are arbitrarily determined using probability distributions without any repeated units. Furthermore, the structure can be manufactured through the powder bed fusion of a laser beam using metal powders and material extrusion using plastic filaments. Additionally, compression tests revealed that the structure exhibited suppressed fracture progress after the initial fracture and increased energy absorption. Moreover, the fracture behavior of the structure was found to be independent of the compression direction because of its structural isotropy.
Satoshi Yamada Assistant ProfessorPhDDivision of Mechanical and Aerospace Engineering, Faculty of Engineering