Hokkaido University Research Profiles


accelerated test: 1

Numbers of lines 20 50 No Page Break Theme Icons
  • Life Sciences
  • Information and Communication
  • Nanotechnology / Materials
  • Manufacturing Technology
  • Human and Social Sciences
  • Energy
  • Environment
  • Tourism / Community development
  • Arctic Research
  • Social Infrastructure
  • Open Facilities
  • Soft Error Testing of Telecommunication Equipment Using a Compact Electron Accelerator Neutron Source

    Preventing malfunctioning of telecommunication devices caused by cosmic rays

    As the semiconductor devices of equipment that support telecommunication networks are becoming more intensively integrated, there is concern that the probability of soft errors caused by cosmic-ray neutrons will increase. To address this problem, we are conducting soft error tests of telecommunication devices using a compact accelerator-driven neutron source at Hokkaido University.


    As telecommunication devices increase in capacity and become more sophisticated, semiconductor devices are becoming more and more integrated. However, there is concern that cosmic ray neutrons may cause an increase in soft errors, such as bit information upset and operation confusion. Therefore, in collaboration with NTT, we have reproduced soft errors using a compact electron accelerator-driven neutron source to create a place to develop countermeasure technologies in advance. This enables the advance prediction of the failure rate in the natural environment, the detection of errors and verification of operational measures, which will lead to improved reliability of the equipment.
    The feature of this technology is the use of a compact accelerator-driven neutron source. In the past, large-scale accelerator-based neutron sources were required, and it was difficult to secure sufficient test time and experimental space. However, through our research, we have demonstrated that it is possible to conduct sufficient tests even in a facility with a neutron intensity of several million times that in nature.