human body shielding: 1
- Life Sciences
- Information and Communication
- Nanotechnology / Materials
- Manufacturing Technology
- Human and Social Sciences
- Energy
- Environment
- Tourism / Community development
- Arctic Research
- Social Infrastructure
- Open Facilities
-
A method to evaluate radio wave propagation characteristics of in-vehicle wireless access services by large-scale electromagnetic field analysis
Toward optimal design of wireless environments
We have conducted research in various fields where radio waves are applied, including the evaluation of complex and special propagation environments in airplanes and passenger railroad cars, internal exposure of the human body to radio waves, electromagnetic interference evaluation and mechanism estimation regarding body medical devices implanted in the body, and evaluation of electromagnetic field leakage in wireless power supply devices for electric vehicles.
Research
The radio propagation environment inside a vehicle is a special environment that differs from the conventional propagation model due to multiple reflections caused by the surrounding metal and the presence of fixtures and passengers inside. It is therefore necessary to evaluate the characteristics of radio wave propagation, including the effects of absorption and scattering of radio waves by the bodies of passengers, to estimate the quality of the wireless connection under actual operational conditions. However, it is difficult to evaluate the propagation characteristics by actual measurement or simple numerical analysis (e.g., ray tracing). This study addresses modeling of the propagation environment in vehicles, which has been difficult in the past, and realizes a simulation method in a very large analysis space by using a supercomputer.
Takashi Hikage Associate Professor