infectious disease: 1
- Life Sciences
- Information and Communication
- Nanotechnology / Materials
- Manufacturing Technology
- Human and Social Sciences
- Energy
- Environment
- Tourism / Community development
- Arctic Research
- Social Infrastructure
- Open Facilities
-
Technology to Create Unique Glycan Derivative Libraries × Microarray Analysis System That Can Be Used Anywhere
Original library using automated glycan synthesis technology × Microarray technology supporting on-site medical care and research
Glycan-related interactions are important targets of infectious diseases and cancer diagnosis. We have developed a microarray system that can be used anywhere to utilize the libraries of glycans, glycoconjugates, glycan-related inhibitors, and their derivatives that have been constructed and accumulated in the process of developing automated glycan synthesis technology.
Research
Microarray technology is a technology that enables simultaneous comparative analysis of the interaction between a large number of compound libraries with well-defined structures and sequences and sample components. We also have the most advanced technology to design and produce our own carbohydrate compound libraries as molecules for microarray analysis based on our automated carbohydrate synthesis technology. The interaction information possessed by carbohydrates is widely used as biomarkers for in vitro diagnostics, such as blood types, serotypes such as O157, and cancer diagnostic markers (CAxx). In addition, we have succeeded in developing an independently powered mobile analyzer that can be used for online diagnosis, such as analysis of infection patterns associated with mutations in infectious diseases and detailed analysis of vaccine effects, by performing specimen collection and microarray analysis on the spot using a smartphone as a terminal.
Hiroshi Hinou Professor ProfessorPh.D.