Hokkaido University Research Profiles

Japanese

mouse model: 1

Numbers of lines 20 50 No Page Break Theme Icons
  • Life Sciences
  • Information and Communication
  • Nanotechnology / Materials
  • Manufacturing Technology
  • Human and Social Sciences
  • Energy
  • Environment
  • Tourism / Community development
  • Arctic Research
  • Social Infrastructure
  • Open Facilities
  • Development of Therapeutic Agents and Biomarkers for Stress-induced Diseases

    Molecular psychoneuroimmunology to understand the molecular mechanism of “disease starts in the mind”

    Chronic stress has become a widespread problem in our society as it may lead to sudden death or other serious problems due to overwork or insomnia. We have clarified the molecular mechanism by which chronic stress induces organ damage and sudden death in mice through the activation of specific neural circuits. This system can be used to search for therapeutic targets for stress-induced diseases.

    Research

    We are studying the link between stress and disease. Recently, when autoreactive T cells against central nervous system antigens were transferred to mice that had been subjected to chronic stress, the mice suddenly died. The cause of death was heart failure due to hemorrhage in the stomach and duodenum, as found with humans. Stress-specific activation of neural circuits induced microinflammation in the brain, where transferred T cells, etc. were accumulated in specific blood vessels, and a new neural circuit activated by this triggered the gastrointestinal disorder and heart failure. There have been no animal model of stress in which the molecular mechanism has been elucidated, and this model is useful for screening of new drugs for stress-induced diseases. Using this system, we also identified a group of molecules of which the expression is upregulated in specific blood vessels in the brain during stress, and antibodies against these molecules suppressed sudden death. We are also currently identifying marker candidates for autoreactive T cells in humans.