Hokkaido University Research Profiles

Japanese

radiative transfer equation: 1

Numbers of lines 20 50 No Page Break Theme Icons
  • Life Sciences
  • Information and Communication
  • Nanotechnology / Materials
  • Manufacturing Technology
  • Human and Social Sciences
  • Energy
  • Environment
  • Tourism / Community development
  • Arctic Research
  • Social Infrastructure
  • Open Facilities
  • Development of Mathematical Algorithms for Biomedical Optical Imaging

    Development of a mathematical model for light propagation model inside biological tissues

    A highly accurate and computationally efficient light propagation model is necessary for the progress of biomedical optical imaging. In this study, we have succeeded in constructing a fast solution method for the radiative transfer equation that describes light propagation with high accuracy. We are working on the advancement of an optical diagnosis and treatment using the proposed method.

    Research

    In this study, we are constructing a mathematical algorithm for biomedical optical imaging based on the radiative transfer equation. Our goal is to develop an imaging technique with excellent image resolution that can be applied to biological tissues and body parts where conventional imaging based on mathematical models cannot be applied. Until now, the numerical computational burden of the radiative transfer equation has been enormous, limiting its applicability to small-sized organisms. In this study, we have succeeded in developing a highly accurate and computationally efficient light propagation model by coupling the radiative transfer equation and the photon diffusion equation. Optical imaging based on the developed light propagation model can be applied to various biological tissues and sites. Currently, we are working on applying the model to the optical diagnosis of thyroid tumors in the human neck and the in-vivo evaluation of optical property values in biological tissues.