Hokkaido University Research Profiles


rheology: 1

Numbers of lines 20 50 No Page Break Theme Icons
  • Life Sciences
  • Information and Communication
  • Nanotechnology / Materials
  • Manufacturing Technology
  • Human and Social Sciences
  • Energy
  • Environment
  • Tourism / Community development
  • Arctic Research
  • Social Infrastructure
  • Open Facilities
  • Observation of the 3D Structure of Soft Matter and the Microrheological Measurement Method

    Relationship between structure formation and viscoelasticity in non-equilibrium complex fluids

    Since soft matter is literally soft, its structure tends to change depending on the external fields, and at that time its physical properties will also change considerably. We are developing methods to investigate the 3D structure and physical properties of soft matter to apply these to functional materials.


    It is known that the apparent viscosity of certain blends of two mutually incompatible polymers is reversibly increased by applying an electric field (electrorheological effect). In general, when two polymers are mixed, one of them becomes a droplet and is dispersed in the other. Under shear flow, the droplet structure in Figure 1(a) is observed, but when an electric field is applied to it, it changes to the network structure in (b), and the viscosity increases accordingly. The relationship between this structure and rheology has been clarified for the first time using this newly developed system. This system has made it possible to clearly observe the phase separation caused by shear flow in actin solutions of biological materials. As shown in Fig. 2, when shear is applied, regions with large velocity gradients appear in the upper and lower positions, and these regions widen as the shear rate increases.