Hokkaido University Research Profiles

Japanese

13. Climate Action: 23

Numbers of lines 20 50 No Page Break Theme Icons
  • 1. No Poverty
  • 2. Zero Hunger
  • 3. Good Health and Well-being
  • 4. Quality Education
  • 5. Gender Equality
  • 6. Clean Water and Sanitation
  • 7. Affordable and Clean Energy
  • 8. Decent Work and Economic Growth
  • 9. Industry, Innovation and Infrastructure
  • 10. Reduced Inequality
  • 11. Sustainable Cities and Communities
  • 12. Responsible Consumption and Production
  • 13. Climate Action
  • 14. Life Below Water
  • 15. Life on Land
  • 16. Peace and Justice Strong Institutions
  • 17. Partnerships to achieve the Goal
  • Research on Biomass Utilization as a Socio-Technical Systems

    Aiming to spread bioenergy through local circulation

    At the Laboratory of Sustainable Material Cycle Systems research is conducted on the development of technologies and social systems (socio-technical systems) to create locally distributed bioenergy from biomass such as food waste, sewage sludge, livestock manure, forest residues and rice straw.

    Research

    We are proposing a system (e.g., planning, modeling and evaluation based on experiments and field studies) that can contribute to both the environment and regional development (economy) by linking energy recovered from biomass (e.g., food waste, sewage sludge, livestock manure, forest residues, and rice straw) through combustion and methane fermentation with local energy consumers (e.g., public facilities, nursing and welfare facilities, agricultural facilities such as greenhouses and food factories). Furthermore, by obtaining cooperation from private companies, we are conducting research on creation of community through biomass utilization in collaboration with the endowed laboratory of biomass community planning (Visiting Professor Toru Furuichi, Specially Appointed Assistant Professor Satoru Ochiai, https://smcs.eng.hokudai.ac.jp/bio-com-p.html).

  • Resilience and Adaptive Capacity of Arctic Marine Systems under a Changing Climate

    Overall understanding of marine ecosystems throughout the Arctic Rim

    International workshops have been held to present individual research results of existing research projects in the pan Arctic seas (i.e., the Arctic Ocean and adjacent subarctic seas), which have been underway in Japan, the U.S., and Norway, with the aim of achieving an overall understanding of the results in each area by identifying similarities and differences.

    Research

    The objective of this study is to provide an overall understanding of the response of marine ecosystems to environmental change in the Pacific-Arctic-Atlantic region by identifying similarities and differences in the circumpolar pan Arctic seas (i.e., the Arctic Ocean and adjacent subarctic seas). The Ecosystem Studies of Sub-Arctic and Arctic Seas (ESSAS), a regional research program of the Integrated Marine Biosphere Research (IMBeR), is the parent organization of this project. The research is promoted mainly by the scientific steering committee members from Japan, the United States, and Norway. Between 2015 and 2018, in particular, three international workshops were held to present the results of existing research in each country and to promote an integrated understanding of marine ecosystems throughout the pan Arctic seas.

    Takafumi Hirata Specially Appointed Associate Professor
  • Ultra-rapid Deposition of Photocatalytic Crystalline Titanium Dioxide Thin Films

    Ultra-rapid electrochemical deposition technology that does not require high temperature heat treatment

    Crystalline titanium dioxide is a practically important oxide as a photocatalyst. We have developed a technology to form crystalline titanium dioxide thin films, which generally require heat treatment at high temperatures, on various metal substrates within only a few seconds using an electrochemical deposition method in aqueous solution.

    Research

    We have succeeded in obtaining titanium dioxide thin film on a practical metal substrate such as Cu, Al, Zn and Fe by electrolysis from an aqueous solution containing TiF62- within only a few seconds. The obtained titanium dioxide thin film is anatase crystalline and shows photocatalytic activity without heat treatment. The obtained titanium dioxide thin film is anatase crystalline and shows photocatalytic activity without heat treatment. We have confirmed that it has excellent properties such as decomposition of organic contaminants on the surface by UV irradiation and superhydrophilicity. Since the titanium dioxide film is doped with substrate elements, the development of new functions such as visible light responsiveness can be expected. It can also be deposited on a transparent conductive substrate.