Hokkaido University Research Profiles

Japanese

2. Zero Hunger: 5

Numbers of lines 20 50 No Page Break Theme Icons
  • 1. No Poverty
  • 2. Zero Hunger
  • 3. Good Health and Well-being
  • 4. Quality Education
  • 5. Gender Equality
  • 6. Clean Water and Sanitation
  • 7. Affordable and Clean Energy
  • 8. Decent Work and Economic Growth
  • 9. Industry, Innovation and Infrastructure
  • 10. Reduced Inequality
  • 11. Sustainable Cities and Communities
  • 12. Responsible Consumption and Production
  • 13. Climate Action
  • 14. Life Below Water
  • 15. Life on Land
  • 16. Peace and Justice Strong Institutions
  • 17. Partnerships to achieve the Goal
  • Development of novel control strategies for intractable diseases in animals

    Development of immunotherapy using antibody drugs and protein preparations for chronic infectious diseases and tumors in domestic and companion animals

    In case of intractable diseases, the elimination mechanisms of pathogens and tumors are disturbed in vivo. This is thought to be due to various immunosuppressive factors that exhaust immune cells. the mechanism of eliminating pathogens and tumors in the body is disturbed, probably due to various immunosuppressive factors that exhaust immune cells. This study is aimed to develop novel formulations that target the immune evasion mechanism and apply them as a novel treatment for animal diseases.

    Research

    Research objective: Development of veterinary antibody drugs and protein drugs targeting PD-1 and other immunosuppressive factors and their application to therapeutics. Comparison with and advantage over conventional technology: This approach does not target a specific disease, but rather a wide range of diseases in which the anti-pathogen and anti-tumor effects are lost due to immunosuppressive mechanisms. Since the immunotherapy is based on activated lymphocytes, it is expected to have a multifunctional immune-enhancing effect. Uniqueness of the research: There are limited reports of clinical applications of this approach in the veterinary fields. Characteristics: We will establish therapeutic antibodies for animals and evaluate their effectiveness against various diseases. Efficacy: We aim to provide new treatments for diseases of livestock (cattle, horses, pigs, etc.) and companion animals (dogs, cats, etc.) for which there are no effective vaccines or treatments.

  • Discovery and Application of a Novel Enzyme Capping the N-Terminus of Peptides

    Novel peptide ligase

    ・We discovered a novel enzyme catalyzing the attachment of non-proteinogenic amino acids to the amino termini of various peptides.
    ・It is expected to lead to the protection of useful bioactive peptides and the development of new anti-tuberculosis drugs.

    Research

    One of the disadvantages of using peptides as pharmaceuticals is that they are degraded by peptidases. Since exo-type peptidases acting on peptide termini are mostly responsible for degradation in humans, attachments of non-proteinogenic amino acids to the peptide termini is valuable from the viewpoint of protecting them from degrading enzymes for drug development. In this study, as a result of biosynthetic studies of the peptide antibiotic pheganomycin, we found an enzyme that capped the amino terminus of various peptides consisting of 2 to 18 amino acids with a phenylglycine derivative, which is a non-proteinogenic amino acids. To understand the broad substrate specificity, we solved the crystal structure of the enzyme and found that the enzyme has a large substrate binding site, which is not found with other enzymes, and that can thus accept a variety of substrates. Nat. Chem. Biol., 11, 71 (2015).

  • Nonlinear Compensator That Can Be Implemented Without Sensors

    Nonlinear compensator that can easily be added to PID control systems

    Currently, PID control is used as the main control method in industry, but the PID control technique has a problem that the control accuracy deteriorates due to the influence of nonlinear terms such as friction and gravity. We have proposed a nonlinear compensator that can easily be added to PID controllers.

    Research

    Digital acceleration control (DAC) is a robust control technique for systems with nonlinear terms and modeling errors that are difficult to model. DAC is a very effective controller, but it cannot perform position control by itself because it controls the target acceleration value. Therefore, we have combined DAC with a general PID control system. This PID-DAC combined control system allows both robust position control and acceleration control. In addition, as a new nonlinear compensator that can easily be added to PID controllers without sensors, we propose two controllers: the PID-DA0 control system, which sets the target acceleration value of the control object to zero, and the PID-DJ0 control system, which sets the target acceleration value to zero. Both controllers can easily be added to existing PID controllers without additional sensors, so they have the great advantage of improving system performance sensorless.

  • Sonoplasma Generator

    A method to generate acoustic cavitation in a fixed location with high efficiency

    Upon the collapse of acoustic cavitation driven by ultrasonic waves in water, the bubble becomes hot and pressure inside increases, turning to plasma (sonoplasma). We have found a way to generate acoustic cavitation in a fixed location with high efficiency, and are working to develop it as a plasma application technology.

    Research

    Plasmas generated in liquid are of great interest in the fields of nanotechnology, environmental engineering and medical engineering, but the need for high voltage to generate the plasma can be an obstacle. Meanwhile, in the field of ultrasonic engineering, it is known that the interior of a bubble becomes plasma at the same time as the collapse of acoustic cavitation. Using a very simple method of inserting a perforated metal plate into a liquid where ultrasonic waves are applied, we have succeeded in localizing and efficiently generating acoustic cavitation, which is difficult to fix in position. This has been valued as a unique method of generating plasma in liquid without using high voltage. Currently, we are working to clarify the mechanism of this method and to prepare guidelines for the design of a large-scale device. In the future, we hope to develop various new plasma application technologies.

  • Understanding the Effects of Monoploidy on Animal Individual Development

    Toward the establishment of a single-fold system control technology for industrial use

    It is aimed to elucidate the mechanism by which the monoploid state, which has only one set of genomes, causes serious disorders in the development of individual animals, and to establish a technology for creating monoploid individuals that can be used for genetic engineering and strain improvement.

    Research

    The cells that make up the body of an animal cell are diploid, having two sets of genomes, one maternal and one paternal. In contrast, unfertilized eggs, which normally do not proliferate as such, become monoploid embryos with only the maternal genome, when they are activated to induce individual development (monogenesis). If monoploid individuals can be obtained from them, it will be very useful for genetic engineering and pure line creation. However, in vertebrates in general, monoploid embryos die due to the early developmental abnormality called “hemiparity syndrome,” so the use of monoploid embryo technology has not been realized yet. Using human cultured cells and early mouse embryos as models, we aim to clarify the effects of the monoploid state on developmental processes at the cellular level using molecular cell biology techniques. Based on these results, we aim to establish a cell manipulation method to eliminate the hemiploidy syndrome and to create viable monoploid individuals with stable traits.