-
1. No Poverty
-
2. Zero Hunger
-
3. Good Health and Well-being
-
4. Quality Education
-
5. Gender Equality
-
6. Clean Water and Sanitation
-
7. Affordable and Clean Energy
-
8. Decent Work and Economic Growth
-
9. Industry, Innovation and Infrastructure
-
10. Reduced Inequality
-
11. Sustainable Cities and Communities
-
12. Responsible Consumption and Production
-
13. Climate Action
-
14. Life Below Water
-
15. Life on Land
-
16. Peace and Justice Strong Institutions
-
17. Partnerships to achieve the Goal
9. Industry, Innovation and Infrastructure: 95
1. No Poverty
2. Zero Hunger
3. Good Health and Well-being
4. Quality Education
5. Gender Equality
6. Clean Water and Sanitation
7. Affordable and Clean Energy
8. Decent Work and Economic Growth
9. Industry, Innovation and Infrastructure
10. Reduced Inequality
11. Sustainable Cities and Communities
12. Responsible Consumption and Production
13. Climate Action
14. Life Below Water
15. Life on Land
16. Peace and Justice Strong Institutions
17. Partnerships to achieve the Goal
-
Equipment for Simultaneous Optimization of Quality and Quantity of Liquid Ice for Freshness Preservation
Liquid ice optimization system for long-term freshness preservation of food
We have developed a device that calculates the minimum required amount of food-grade liquid ice (slurry ice (salt water ice) or salt-free water ice) using a simple heat capacity calculation, and that also calculates the salt concentration, water/ice mixing ratio, and shelf life to determine the slurry ice temperature based on the overall heat transfer coefficient (container heat radiation parameter) of the storage container.
Research
The amount of produced slurry ice, which is useful for maintaining the freshness of marine animals, often exceeded the amount actually used because there was not a calculation method that took storage time into account. At our laboratory, we have developed a device to optimize the quality (salt concentration and water/ice mixing ratio) and quantity (shelf life) of slurry ice simultaneously and quickly on the spot based on the overall heat transfer coefficient of the storage container, as described earlier. Since this method can be applied to the production of fresh water-derived salt-free liquid ice, it can also be used for other food than marine animals (vegetables, fruits, and livestock), and we are currently working to obtain the rights to this invention.
Naoto Tsubouchi Associate Professor -
MIRASAL, a Device for Visualizing the Freshness of and Best Timing for Eating Food Animals
A device for evaluating the freshness of and the best timing for eating food animals to ensure safety and security
In collaboration with the National Institute of Advanced Industrial Science and Technology (AIST), we have developed a visualization device called MIRASAL to evaluate the freshness of and the best timing for eating food animals by using a simulation method to determine the concentration of degraded components in any part of a food animal (aquatic or livestock animal), which changes over the course of time after the animal has died.
Research
At the wholesale markets in fish and shellfish production and consumption areas, freshness is an important criterion in the determination of transaction prices, and the K value has been proposed as an evaluation index. However, since the K-value is calculated by sampling any part of a postmortem marine animal and analyzing the components after various pretreatments, real-time evaluation (understanding) at the distribution site is not possible. Aiming to solve this problem using an appropriate simulation method, we have developed a device that can evaluate the freshness and the best timing to eat fish and shellfish based on various information such as the type and size of the fish and shellfish, the elapsed time since death, and the storage temperature, using the method described above. We are currently working on the acquisition of the rights to the invention and for improvement of its portability (for use with smartphones, etc.). This device “MIRASAL” can also be applied to livestock animals such as beef, chicken, and pork.
Naoto Tsubouchi Associate Professor -
A Novel Porous Structure with High Mechanical Performance for Additive Manufacturing
Biomimetic design based on bone biomechanics
A novel three-dimensional (3D) printed porous structure with high mechanical performance is designed biomimetically based on the insights of bone biomechanics. The resulting structure might be lightweight and mechanically isotropic with suppressed fracture progression and high energy absorption.
Research
In general, porous structures with repeating units, such as diamond lattices, suffer from mechanical issues, such as fracture development, low energy absorption, and mechanical anisotropy due to these repeating units. To address these issues, we develop a novel porous structure with high mechanical performance for additive manufacturing. The structure is designed biomimetically based on the insights of bone biomechanics. It has a framework made up of 3D isotropically interconnected beams. Here, the beam lengths and bifurcation counts are arbitrarily determined using probability distributions without any repeated units. Furthermore, the structure can be manufactured through the powder bed fusion of a laser beam using metal powders and material extrusion using plastic filaments. Additionally, compression tests revealed that the structure exhibited suppressed fracture progress after the initial fracture and increased energy absorption. Moreover, the fracture behavior of the structure was found to be independent of the compression direction because of its structural isotropy.
Satoshi Yamada Associate ProfessorPhDDivision of Mechanical and Aerospace Engineering, Faculty of Engineering -
Metabolism of Biological Components and Pre-symptomatic Disorder
Elucidation of the mechanism of non-infectious pathogenesis by considering the metabolism of biological components: Application as a system of evaluating the functionality of foods
Based on the metabolic analysis of biological components (bile acids, minerals, etc.), we conduct research on the elucidation of the pathogenesis of various diseases and the establishment of pre-symptomatic disorder models using laboratory animals. We aim to elucidate the point of action in prevention of disease onset via dietary intervention.
Research
The composition of bile acids synthesized by the liver fluctuates with aging and excessive energy intake, and that can be estimated under these conditions. Therefore, by feeding a very small amount of a specific bile acids to experimental animals, it is possible to create a state that mimics the bile acid environment in the corresponding situation. We have found that this results in fatty liver and related pathologies. We also found that a mild deficiency of zinc is a pre-symptomatic disorder model for ulcerative colitis. These findings indicate that minor metabolic changes that occur continuously due to dietary bias (excess or deficiency) are involved in the onset of infectious and non-infectious diseases, and that the experimental system itself, which mimics the situation by controlling dietary components, can serve as a model of pre-symptomatic disorders. Currently, we are constructing various pre-symptomatic disorder models and analyze their pathogenic mechanisms. We are also using these systems to evaluate the functionality of foods.
Satoshi Ishizuka Professor -
Ecosystem Restoration of Disturbed Areas
Promoting eco-friendly restoration of ecosystems that have been disturbed by natural or human activities through facilitation.
Facilitation refers to a phenomenon whereby the establishment of a certain plant prompts the invasion and establishment of another species. In ecosystems that have suffered catastrophic damage due to a major disturbance such as a volcanic eruption, fire, tsunami or mining, the detection and introduction of such facilitators will help rapid and eco-friendly ecosystem restoration.
-
Fig. Platanthera metabifolia, which has taken root in a patch of Mineyanagi willow on Mt. Komagatake in Oshima after its major eruption in 1920.
The Mineyanagi willow promotes the colonization by many species and thereby enhances ecological diversity . -
Fig. Relationship between coverage of M. sinensis, a facilitator, and the number/density of woody plants on a ski slope in Sapporo (plot size: 4 m2).
The colonization of M. sinensis prompts an increase in the number of woody plants, so the creation of M. sinensis grasslands will lead to the growth of natural forests without afforestation efforts.
Research
Ecosystem restoration after large-scale disturbance is often an urgent task, but it has often been difficult to establish a target plant species in a disturbed environment. A facilitator is a plant species that prompts the establishment of other species once it has been established. If we can detect and establish a facilitator in the respective disturbed areas to prompt the invasion and establishment of the target species there, it will be possible to quickly restore ecosystems in a cost-effective manner with minimal human effort. Therefore, this is an ecofriendly technology for ecosystem restoration.
So far, we have found that the white beak-sedge (Rhynchospora) is functioning as a facilitator in the post-mined peatland of Sarobetsu Mire, and the Mineyanagi willow in Mt. Komagatake in Oshima, Hokkaido. Microtopography modification has also been found effective as a means of introducing facilitators.Shiro Tsuyuzaki Professor -
-
Nano Knowledge Exploration Project
Knowledge discovery from experimental records of nanocrystalline devices
In this research, we are studying knowledge management to extract and organize useful information for device development from experimental records and papers compiled in the process of research and development of nanocrystal devices.
Research
In this presentation, we propose an experiment record management system based on interviews with researchers in actual nanocrystal device development. The system proposes an integrated method for the management of records of parameters used in experiments that have been stored and recorded separately, as well as the resulting experimental records. In addition, by extracting information from the paper summarizing the final experiment, we propose a method for analyzing the purpose and characteristics of a series of experiments conducted by researchers in detail, and for using it as the basis for discussing similarities between various cases. With this method, we are proposing a method of extracting useful information from unknown papers by using machine learning methods on a corpus of information manually extracted by a few people.
Masaharu Yoshioka Professor -
A method to evaluate radio wave propagation characteristics of in-vehicle wireless access services by large-scale electromagnetic field analysis
Toward optimal design of wireless environments
We have conducted research in various fields where radio waves are applied, including the evaluation of complex and special propagation environments in airplanes and passenger railroad cars, internal exposure of the human body to radio waves, electromagnetic interference evaluation and mechanism estimation regarding body medical devices implanted in the body, and evaluation of electromagnetic field leakage in wireless power supply devices for electric vehicles.
Research
The radio propagation environment inside a vehicle is a special environment that differs from the conventional propagation model due to multiple reflections caused by the surrounding metal and the presence of fixtures and passengers inside. It is therefore necessary to evaluate the characteristics of radio wave propagation, including the effects of absorption and scattering of radio waves by the bodies of passengers, to estimate the quality of the wireless connection under actual operational conditions. However, it is difficult to evaluate the propagation characteristics by actual measurement or simple numerical analysis (e.g., ray tracing). This study addresses modeling of the propagation environment in vehicles, which has been difficult in the past, and realizes a simulation method in a very large analysis space by using a supercomputer.
Takashi Hikage Associate Professor -
Academic Intercloud
Promoting research and development through academic cloud collaboration
We promote research to create an academic intercloud that links nationwide cloud systems, and conduct joint research on cloud-related technologies such as the optimization of resource allocation in intercloud environments and linkage between supercomputers and interclouds.
Research
Hokkaido University Information Initiative Center has established the Hokkaido University Academic Cloud, one of the largest academic clouds in Japan, and provides cloud services to researchers nationwide, including those concerning virtual and physical machines and their cluster systems, high-speed high-capacity cloud storage services, and machine learning and big data processing systems for research and development. We are also promoting research on fundamental technologies to realize nationwide cloud system collaboration and system construction to support researchers. Specific examples include the development of infrastructure technologies for cloud collaboration (authentication collaboration, etc.) and the construction of a test system (Fig. 1), resource allocation optimization in an intercloud environment, and the realization of a large-scale design optimization framework on a nationwide scale by linking supercomputers and intercloud infrastructure (Fig. 2). We are also conducting joint research with universities, research institutes and companies across the country.
Masaharu Munetomo Professor -
Advanced Optical Communication Technology, the Core of the Next-generation Ultrahigh-speed Communication Network
Aiming at spectacular advancement of information and communication networks
To realize spectacular advancement of information and communication networks of which the capacity has to increase by a factor of 1,000 in the next 20 years, we are working to develop photonic infrastructure technology that will be the core of next-generation ultrahigh-speed communication networks.
Research
We are studying new structured optical fibers to overcome the limitation of existing optical fibers, optical fiber application technologies to ensure safety and security, ultra-compact optical circuits to support opticalization, and optical simulators to support the design of optical fibers and optical circuits.
Kunimasa Saitoh Professor -
An Idea-supporting Multimedia Search System
An information retrieval system that organically links images, video and other data to help searchers find inspiration and ideas.
The idea-supporting multimedia search system organically links unstructured data such as images, music and video, extracts inherent similarities and effectively presents them to searchers to help them find ideas and inspiration.
Research
We have succeeded in establishing associations and similarities between different media, and developed an associative search scheme that takes ambiguity of multimedia information into consideration (fused search). We have also realized a new search engine and interface by quickly introducing modeling of personal preferences through user networks and visualization of similarities in preferences through user interfaces (personal adaptive search). Use of the search engine and interface enables a completely new search that effectively utilizes the polysemy and ambiguity inherent in multimedia contents.
Miki Haseyama Professor -
Analysis of Thermo-acoustic Vibration Generated by Combustion Equipment
Thermo-acoustic vibrations often occur in combustion devices and combustion gas exhaust systems, causing noise and reducing the life of the combustion devices. This is caused by acoustic pressure fluctuations coupled with heat generation fluctuations in combustion and exhaust systems. With this study, we analyze this physical process and investigate the suppression technology.
Research
Thermo-acoustic vibrations are often generated in combustion equipment and combustion gas exhaust systems, leading to noise generation and reduction of the life of combustion equipment. This is caused by acoustic pressure fluctuations linked to heat generation fluctuations in the combustion and exhaust systems, and we are analyzing the physical processes that cause these fluctuations and investigating techniques to suppress them. With this study, a single circular tube is filled with a combustible premixed gas that is ignited at one end, and a thermo-acoustic vibration phenomenon that occurs during flame propagation in the tube is used. Various boundary conditions (open end condition, direction of propagation, composition of the gas mixture, diameter and length of the propagating tube, structure of the flame surface, etc.) are applied to this propagation phenomenon to induce the thermo-acoustic vibration phenomenon, and the factors behind it can then be understood using the combustion instability analysis method. The vibration phenomena reproduced here are observed in a simplified system, but they are general phenomena and lead directly to the understanding of thermo-acoustic vibration phenomena that occur in actual combustion equipment and exhaust systems.
Osamu Fujita Professor -
AR Communication System
Avatar-based augmented reality group communication through sharing of terminal position and posture information
By using avatars as intermediaries, it is possible to communicate beyond the constraints of time and space. In this system, AR communication is realized by sharing the position and posture information of participants in group communication and reflecting it in the behavior of avatars visible from each participant's terminal.
Research
Since conventional avatar-based communication systems are based on one-to-one communication, it is difficult to recognize the position and posture information of each physical person participating in a communication field of three or more people where virtual and real worlds are mixed, and to control the behavior of individual avatars accordingly, while maintaining the integrity of the entire field.
In this research, we have developed an AR communication system that shares the position and posture information of physical people (e.g., smartphone terminals) participating in a communication field through recognition of a common AR target and network linkage between terminals, and reflects this information in the behavior of avatars visible from each terminal. The avatars know who and where the participants are in the communication field, and the avatar changing its pose following the movements on one participant's terminal can be seen by other participants from their own viewpoints.Yoshiaki Takai Specially Appointed Professor -
Clarifying the Physical Constants of Electron Spin Control
Accelerating the research and development of next-generation electronic devices
Among various semiconductor properties, we have quantitatively clarified the previously unknown “spin-orbit interactions” of n-type quantum well structures based on InGaAs semiconductors, including gate voltage dependence. This achievement will be a seed for the development of next-generation spin devices.
Research
Existing semiconductor devices operate through the electric charge of electrons. In addition to the electric charge, an electron also has the other property of spin, which is a magnetic property. The electron spin in a solid can be aligned in a certain direction (Fig. 1a) or rotated about a specific axis (Fig. 1bc), depending on the situation. The key to realizing next-generation electronic devices is to control such electron spin in semiconductor devices. In this study, we used indium-, gallium-, and arsenic-based field-effect transistors (Fig. 2) and performed electrical measurements in a cryogenic environment (absolute temperature of 20 mK) using a dilution refrigerator (Fig. 3). In this way, we were able to precisely determine for the first time the spin-orbit interaction coefficient, which is necessary to control electron spin (Fig. 4).
Takaaki Koga Associate Professor -
Classification of Genetic Information Using Machine Learning
Predicting the binding of compounds to cell receptors
Various receptors on the surface of cells play important roles in maintaining homeostasis and environmental responses, but it is difficult to identify compounds that can bind to them. We propose a method for narrowing down the candidates for binding compounds by using machine learning.
Research
Although the human genome has been deciphered and many of the genes have been elucidated, the structure and function of receptors, which play an important role in homeostasis and environmental responses, have not been fully elucidated, because most of them are membrane proteins and their expression levels are low. Many receptors, however, are expected to be major targets for drug discovery in the future because of their functional aspects, and are thought to be the factors that cause individual differences. We are applying machine learning technology to efficiently narrow down compounds that can bind to receptors.
Toshinori Endo Professor -
Coherent Raman Scattering Endoscope
Development of an eye for a novel endoscopic surgical support robot using coherent Raman scattering for label-free nerve visualization
Raman scattering provides insight into molecular species and structures without staining, but its use has been limited due to its extremely weak scattering. We are developing microscopes and endoscopes that provide Raman images in real-time by using coherent Raman scattering phenomena with ultrafast lasers.
Research
Raman scattering has been used in chemical analysis, physical chemistry, and semiconductor research because it provides information on molecular species and structures without staining. It is also recently actively applied to the biological and medical fields. However, Raman scattering is very weak. We have developed a multifocal coherent Raman scattering microscope with integrated a wavelength-tunable synchronous picosecond laser and realized imaging at 100 frame/s, which is faster than the video rate. We also demonstrated that nerves are visualized without staining and at high speed under a rigid endoscope of 12 mm in diameter and 550 mm in length. It is expected to be a new imaging tool for nerve-sparing endoscopic surgery.
Mamoru Hashimoto Professor -
Communication Robot System
Social space recognition system using dialogue activity and attention guidance system and multiple robots
By calculating the level of activity of a dialogue between people, a robot can recognize the intensity of that dialogue space and adapt its behavior to the context. Furthermore, by applying this mechanism to the behavior of multiple robots, it will become possible to guide the user's attention.
Research
Our dialogue activity calculation system calculates the real-time activity level using information such as the distance between the interactants, voice data, and body movements. By using this activity level, the robot can determine whether it is allowed to enter the dialogue space or interrupt the dialogue, and can take contextually adaptive actions. Furthermore, by having multiple robots act in a way that increases the dialogue activity level for each other's actions, the user's attention (e.g., gaze) can easily be guided. Such a system for generating robot behavior using the level of dialogue activity has not been included in conventional research on social robots, and can be applied to robots at reception desks and home robots for households.
Tetsuo Ono Specially Appointed Professor -
Control of Sedimentation and Diffusion Behavior Using the Collectivity of Particles in Liquid
Free control of the settling behavior of particles
We introduce technologies to accelerate the sedimentation rate and control the dispersion behavior of particles in complex channels by taking advantage of the collective nature of particles observed when there is a difference in the concentration of the suspension.
Research
We propose technologies to actively control the sedimentation rate and dispersion behavior by effectively using the collective nature of particles in liquid caused by concentration differences. When suspension conditions change, heterogeneously dispersed particles show collective sedimentation behavior. We aim to understand the behavior of particles near the concentration interface, which is closely associated with such collective behavior, to actively use it to promote sedimentation, control dispersion and improve transport efficiency, all of which are important in various engineering processes.
Shusaku Harada Associate Professor -
Cooperation and Value Creation in Community-based Workspaces
Development process of coworking
In recent years, working systems of individuals who do not necessarily have the same occupation or affiliation but interact and cooperate with each other according to the situation in organizations and local communities, as well as the workplaces that they share, have been attracting attention. This research is aimed to clarify the process of cooperation and value creation in such workplaces.
Research
The purpose of this study is to elucidate the process of cooperation and value creation in a community-type workspace. A community-type workspace is an open workspace where individuals share information and knowledge with other through communication, and create value through collaboration according to the situation. A coworking space is a typical example of such a place, and in recent years, it has been becoming more and more popular in Europe, the U.S., and the rest of the world. In the background, there is a movement of questioning the highly uniform interaction and cooperation among members in closed spaces, a system that is still dominant in organizations and local communities, and to achieve both individual autonomy and solidarity. This research is expected to provide knowledge that will contribute to the design and operation of such workspaces, as well as their organizational and social utilization, which are still largely unknown.
Tadashi Uda Associate Professor -
Creating Appropriate Governance Systems based on Theory and Practice
Making Our Society Safer and More Secure through Public-Private Collaborations
Based on my previous case studies on safety and environmental regulatory processes, science and technology policies, and regional developments, I conduct research on how to create appropriate governance systems that contribute to solving public policy problems in introducing and disseminating advanced technologies into society. Governance theory and practice, through collaboration with stakeholders, will undoubtedly help.
Research
While technology greatly benefits society, it also poses various risks. Therefore, when introducing advanced technology, it is necessary to design governance systems that minimise these risks and to determine the optimal public policies to maximize the benefits.
In the case of automobiles, the perception of the regulatory policy often differs among stakeholders such as manufacturers, regulators, and users. Regulatory policy is also largely determined by harmonized international standards.
As such, I define public policy problems in introducing advanced technology into society based on an understanding of the overall picture, seek a place in which stakeholders can reach an agreement, build consensus, and consider how to create governance systems in which the public and private sectors can cooperate.Yuichi Murakami Associate ProfessorPh.D. -
Creation of Highly Active Catalysts Using Polystyrene-bridged Bisphosphine Ligands
Design of metal complex catalysts using polymeric carriers as the reaction site and development of an efficient synthetic processes
We have developed polystyrene-crosslinked bisphosphine ligands that can be used to create polymer-supported metal catalysts. Thanks to the effect of polymer topology, it is possible to suppress disproportionation of metal complexes and deactivation of catalysts caused by metal aggregation. It is particularly useful as a ligand for first transition series metal catalysts.
Research
Heterogeneous (insoluble) metal catalysts, which are easy to separate from the reaction mixture and have excellent reusability, can be used for organic synthesis in an environmentally-friendly manner. However, compared with the corresponding homogeneous (soluble) catalysts, they have a problem of reduced catalytic activity. We have developed a polystyrene-crosslinked bisphosphine ligand, PS-DPPBz, based on the topological control of polymer chains. Since this ligand is effective in generating highly active monochelate mononuclear transition metal complexes, it has significantly improved the efficiency of Ni-catalyzed reactions such as amination coupling of aryl chlorides and ester-azole coupling. PS-DPPBz can also be used for substrates to which it is difficult to apply existing catalysts. PS-DPPBz can be separated by filtration and reused, so it is expected to use this catalyst for industrial purposes.
Masaya Sawamura Professor