Hokkaido University Research Profiles

Japanese

9. Industry, Innovation and Infrastructure: 101

Numbers of lines 20 50 No Page Break Theme Icons
  • 1. No Poverty
  • 2. Zero Hunger
  • 3. Good Health and Well-being
  • 4. Quality Education
  • 5. Gender Equality
  • 6. Clean Water and Sanitation
  • 7. Affordable and Clean Energy
  • 8. Decent Work and Economic Growth
  • 9. Industry, Innovation and Infrastructure
  • 10. Reduced Inequality
  • 11. Sustainable Cities and Communities
  • 12. Responsible Consumption and Production
  • 13. Climate Action
  • 14. Life Below Water
  • 15. Life on Land
  • 16. Peace and Justice Strong Institutions
  • 17. Partnerships to achieve the Goal
  • Equipment for Simultaneous Optimization of Quality and Quantity of Liquid Ice for Freshness Preservation

    Liquid ice optimization system for long-term freshness preservation of food

    We have developed a device that calculates the minimum required amount of food-grade liquid ice (slurry ice (salt water ice) or salt-free water ice) using a simple heat capacity calculation, and that also calculates the salt concentration, water/ice mixing ratio, and shelf life to determine the slurry ice temperature based on the overall heat transfer coefficient (container heat radiation parameter) of the storage container.

    Research

    The amount of produced slurry ice, which is useful for maintaining the freshness of marine animals, often exceeded the amount actually used because there was not a calculation method that took storage time into account. At our laboratory, we have developed a device to optimize the quality (salt concentration and water/ice mixing ratio) and quantity (shelf life) of slurry ice simultaneously and quickly on the spot based on the overall heat transfer coefficient of the storage container, as described earlier. Since this method can be applied to the production of fresh water-derived salt-free liquid ice, it can also be used for other food than marine animals (vegetables, fruits, and livestock), and we are currently working to obtain the rights to this invention.

  • MIRASAL, a Device for Visualizing the Freshness of and Best Timing for Eating Food Animals

    A device for evaluating the freshness of and the best timing for eating food animals to ensure safety and security

    In collaboration with the National Institute of Advanced Industrial Science and Technology (AIST), we have developed a visualization device called MIRASAL to evaluate the freshness of and the best timing for eating food animals by using a simulation method to determine the concentration of degraded components in any part of a food animal (aquatic or livestock animal), which changes over the course of time after the animal has died.

    Research

    At the wholesale markets in fish and shellfish production and consumption areas, freshness is an important criterion in the determination of transaction prices, and the K value has been proposed as an evaluation index. However, since the K-value is calculated by sampling any part of a postmortem marine animal and analyzing the components after various pretreatments, real-time evaluation (understanding) at the distribution site is not possible. Aiming to solve this problem using an appropriate simulation method, we have developed a device that can evaluate the freshness and the best timing to eat fish and shellfish based on various information such as the type and size of the fish and shellfish, the elapsed time since death, and the storage temperature, using the method described above. We are currently working on the acquisition of the rights to the invention and for improvement of its portability (for use with smartphones, etc.). This device “MIRASAL” can also be applied to livestock animals such as beef, chicken, and pork.

  • A Novel Porous Structure with High Mechanical Performance for Additive Manufacturing

    Biomimetic design based on bone biomechanics

    A novel three-dimensional (3D) printed porous structure with high mechanical performance is designed biomimetically based on the insights of bone biomechanics. The resulting structure might be lightweight and mechanically isotropic with suppressed fracture progression and high energy absorption.

    Research

    In general, porous structures with repeating units, such as diamond lattices, suffer from mechanical issues, such as fracture development, low energy absorption, and mechanical anisotropy due to these repeating units. To address these issues, we develop a novel porous structure with high mechanical performance for additive manufacturing. The structure is designed biomimetically based on the insights of bone biomechanics. It has a framework made up of 3D isotropically interconnected beams. Here, the beam lengths and bifurcation counts are arbitrarily determined using probability distributions without any repeated units. Furthermore, the structure can be manufactured through the powder bed fusion of a laser beam using metal powders and material extrusion using plastic filaments. Additionally, compression tests revealed that the structure exhibited suppressed fracture progress after the initial fracture and increased energy absorption. Moreover, the fracture behavior of the structure was found to be independent of the compression direction because of its structural isotropy.

    Satoshi Yamada Assistant Professor
    PhD
    Division of Mechanical and Aerospace Engineering, Faculty of Engineering
  • Metabolism of Biological Components and Pre-symptomatic Disorder

    Elucidation of the mechanism of non-infectious pathogenesis by considering the metabolism of biological components: Application as a system of evaluating the functionality of foods

    Based on the metabolic analysis of biological components (bile acids, minerals, etc.), we conduct research on the elucidation of the pathogenesis of various diseases and the establishment of pre-symptomatic disorder models using laboratory animals. We aim to elucidate the point of action in prevention of disease onset via dietary intervention.

    Research

    The composition of bile acids synthesized by the liver fluctuates with aging and excessive energy intake, and that can be estimated under these conditions. Therefore, by feeding a very small amount of a specific bile acids to experimental animals, it is possible to create a state that mimics the bile acid environment in the corresponding situation. We have found that this results in fatty liver and related pathologies. We also found that a mild deficiency of zinc is a pre-symptomatic disorder model for ulcerative colitis. These findings indicate that minor metabolic changes that occur continuously due to dietary bias (excess or deficiency) are involved in the onset of infectious and non-infectious diseases, and that the experimental system itself, which mimics the situation by controlling dietary components, can serve as a model of pre-symptomatic disorders. Currently, we are constructing various pre-symptomatic disorder models and analyze their pathogenic mechanisms. We are also using these systems to evaluate the functionality of foods.

  • Ecosystem Restoration of Disturbed Areas

    Promoting eco-friendly restoration of ecosystems that have been disturbed by natural or human activities through facilitation.

    Facilitation refers to a phenomenon whereby the establishment of a certain plant prompts the invasion and establishment of another species. In ecosystems that have suffered catastrophic damage due to a major disturbance such as a volcanic eruption, fire, tsunami or mining, the detection and introduction of such facilitators will help rapid and eco-friendly ecosystem restoration.

    • Fig. Platanthera metabifolia, which has taken root in a patch of Mineyanagi willow on Mt. Komagatake in Oshima after its major eruption in 1920.
      The Mineyanagi willow promotes the colonization by many species and thereby enhances ecological diversity .

    • Fig. Relationship between coverage of M. sinensis, a facilitator, and the number/density of woody plants on a ski slope in Sapporo (plot size: 4 m2).
      The colonization of M. sinensis prompts an increase in the number of woody plants, so the creation of M. sinensis grasslands will lead to the growth of natural forests without afforestation efforts.

    Research

    Ecosystem restoration after large-scale disturbance is often an urgent task, but it has often been difficult to establish a target plant species in a disturbed environment. A facilitator is a plant species that prompts the establishment of other species once it has been established. If we can detect and establish a facilitator in the respective disturbed areas to prompt the invasion and establishment of the target species there, it will be possible to quickly restore ecosystems in a cost-effective manner with minimal human effort. Therefore, this is an ecofriendly technology for ecosystem restoration.
    So far, we have found that the white beak-sedge (Rhynchospora) is functioning as a facilitator in the post-mined peatland of Sarobetsu Mire, and the Mineyanagi willow in Mt. Komagatake in Oshima, Hokkaido. Microtopography modification has also been found effective as a means of introducing facilitators.

  • Nano Knowledge Exploration Project

    Knowledge discovery from experimental records of nanocrystalline devices

    In this research, we are studying knowledge management to extract and organize useful information for device development from experimental records and papers compiled in the process of research and development of nanocrystal devices.

    Research

    In this presentation, we propose an experiment record management system based on interviews with researchers in actual nanocrystal device development. The system proposes an integrated method for the management of records of parameters used in experiments that have been stored and recorded separately, as well as the resulting experimental records. In addition, by extracting information from the paper summarizing the final experiment, we propose a method for analyzing the purpose and characteristics of a series of experiments conducted by researchers in detail, and for using it as the basis for discussing similarities between various cases. With this method, we are proposing a method of extracting useful information from unknown papers by using machine learning methods on a corpus of information manually extracted by a few people.

  • A method to evaluate radio wave propagation characteristics of in-vehicle wireless access services by large-scale electromagnetic field analysis

    Toward optimal design of wireless environments

    We have conducted research in various fields where radio waves are applied, including the evaluation of complex and special propagation environments in airplanes and passenger railroad cars, internal exposure of the human body to radio waves, electromagnetic interference evaluation and mechanism estimation regarding body medical devices implanted in the body, and evaluation of electromagnetic field leakage in wireless power supply devices for electric vehicles.

    Research

    The radio propagation environment inside a vehicle is a special environment that differs from the conventional propagation model due to multiple reflections caused by the surrounding metal and the presence of fixtures and passengers inside. It is therefore necessary to evaluate the characteristics of radio wave propagation, including the effects of absorption and scattering of radio waves by the bodies of passengers, to estimate the quality of the wireless connection under actual operational conditions. However, it is difficult to evaluate the propagation characteristics by actual measurement or simple numerical analysis (e.g., ray tracing). This study addresses modeling of the propagation environment in vehicles, which has been difficult in the past, and realizes a simulation method in a very large analysis space by using a supercomputer.

  • A Study on Pro-beam Roadway Lighting in Urban Areas

    To prevent night-time accidents involving pedestrians at intersections in urban areas, we are developing a Pro-beam road lighting system that works with headlights to help drivers quickly detect pedestrians crossing the street. Pro-beam is a lighting system whereby the light distribution of the lamps is directed in the travelling direction of the vehicles.

    Research

    We have summarized the requirements and functions of pro-beam road lighting to design specific light distribution of Pro-beam lighting to increase the visibility of pedestrians crossing the road through optical simulation and visibility evaluation experiments. Using the prototype light fixture, we have evaluated drivers’ visibility of pedestrians who are standing still and measured the time until drivers detect pedestrians at intersections using video images. As a result, we have confirmed that the Pro-beam lighting system provides higher visibility of the entire road space, including the oncoming lane, and helps drivers quickly detect pedestrians crossing the road not only from the right but also from the left. We are now working on the design and development of a light fixture for practical use as a road light by developing the prototype light fixture.

  • Academic Intercloud

    Promoting research and development through academic cloud collaboration

    We promote research to create an academic intercloud that links nationwide cloud systems, and conduct joint research on cloud-related technologies such as the optimization of resource allocation in intercloud environments and linkage between supercomputers and interclouds.

    Research

    Hokkaido University Information Initiative Center has established the Hokkaido University Academic Cloud, one of the largest academic clouds in Japan, and provides cloud services to researchers nationwide, including those concerning virtual and physical machines and their cluster systems, high-speed high-capacity cloud storage services, and machine learning and big data processing systems for research and development. We are also promoting research on fundamental technologies to realize nationwide cloud system collaboration and system construction to support researchers. Specific examples include the development of infrastructure technologies for cloud collaboration (authentication collaboration, etc.) and the construction of a test system (Fig. 1), resource allocation optimization in an intercloud environment, and the realization of a large-scale design optimization framework on a nationwide scale by linking supercomputers and intercloud infrastructure (Fig. 2). We are also conducting joint research with universities, research institutes and companies across the country.

  • Advanced Optical Communication Technology, the Core of the Next-generation Ultrahigh-speed Communication Network

    Aiming at spectacular advancement of information and communication networks

    To realize spectacular advancement of information and communication networks of which the capacity has to increase by a factor of 1,000 in the next 20 years, we are working to develop photonic infrastructure technology that will be the core of next-generation ultrahigh-speed communication networks.

    Research

    We are studying new structured optical fibers to overcome the limitation of existing optical fibers, optical fiber application technologies to ensure safety and security, ultra-compact optical circuits to support opticalization, and optical simulators to support the design of optical fibers and optical circuits.

  • Alpha-defensins Prompting a Paradigm Shift in the Intestinal Environment

    From a scientific understanding of ishoku-dougen (an idea that the same principles underlie a normal diet and medical treatment) to preventive medicine

    The α-defensins secreted by Paneth cells regulate the intestinal microflora and are deeply involved in their elimination and symbiosis. We will evaluate the intestinal environment from the viewpoint that the intestinal environment is defined by the three elements of food, α-defensins and intestinal bacteria, and create a paradigm shift to contribute to the clarification of disease mechanisms and the development of preventive medicine.

    Research

    Using isolated small intestinal crypts and enteroids, which are three-dimensional small intestinal epithelial culture systems, we will elucidate the innate immunity of Paneth cells, which are intestinal epithelial cells (that secreteα-defensins), symbiosis with intestinal bacteria, regeneration and differentiation and other molecular mechanisms associated with various functions, taking advantage of state-of-the-art analytical methods such as confocal laser microscopy and flow cytometry. The intestine forms a network between various organs in the body and by analyzing the mechanism of the intestinal environment focused on the function of Paneth cells will make it possible to control the intestinal environment and create preventive measures and treatments for various diseases. From the perspective of the intestines, “food” and “drugs” virtually mean the same thing. We hope to contribute to the realization of a healthy longevity society through industry-academia-community collaboration based on the knowledge we have created.

  • An Idea-supporting Multimedia Search System

    An information retrieval system that organically links images, video and other data to help searchers find inspiration and ideas.

    The idea-supporting multimedia search system organically links unstructured data such as images, music and video, extracts inherent similarities and effectively presents them to searchers to help them find ideas and inspiration.

    Research

    We have succeeded in establishing associations and similarities between different media, and developed an associative search scheme that takes ambiguity of multimedia information into consideration (fused search). We have also realized a new search engine and interface by quickly introducing modeling of personal preferences through user networks and visualization of similarities in preferences through user interfaces (personal adaptive search). Use of the search engine and interface enables a completely new search that effectively utilizes the polysemy and ambiguity inherent in multimedia contents.

  • Analysis of Thermo-acoustic Vibration Generated by Combustion Equipment

    Thermo-acoustic vibrations often occur in combustion devices and combustion gas exhaust systems, causing noise and reducing the life of the combustion devices. This is caused by acoustic pressure fluctuations coupled with heat generation fluctuations in combustion and exhaust systems. With this study, we analyze this physical process and investigate the suppression technology.

    Research

    Thermo-acoustic vibrations are often generated in combustion equipment and combustion gas exhaust systems, leading to noise generation and reduction of the life of combustion equipment. This is caused by acoustic pressure fluctuations linked to heat generation fluctuations in the combustion and exhaust systems, and we are analyzing the physical processes that cause these fluctuations and investigating techniques to suppress them. With this study, a single circular tube is filled with a combustible premixed gas that is ignited at one end, and a thermo-acoustic vibration phenomenon that occurs during flame propagation in the tube is used. Various boundary conditions (open end condition, direction of propagation, composition of the gas mixture, diameter and length of the propagating tube, structure of the flame surface, etc.) are applied to this propagation phenomenon to induce the thermo-acoustic vibration phenomenon, and the factors behind it can then be understood using the combustion instability analysis method. The vibration phenomena reproduced here are observed in a simplified system, but they are general phenomena and lead directly to the understanding of thermo-acoustic vibration phenomena that occur in actual combustion equipment and exhaust systems.

  • AR Communication System

    Avatar-based augmented reality group communication through sharing of terminal position and posture information

    By using avatars as intermediaries, it is possible to communicate beyond the constraints of time and space. In this system, AR communication is realized by sharing the position and posture information of participants in group communication and reflecting it in the behavior of avatars visible from each participant's terminal.

    Research

    Since conventional avatar-based communication systems are based on one-to-one communication, it is difficult to recognize the position and posture information of each physical person participating in a communication field of three or more people where virtual and real worlds are mixed, and to control the behavior of individual avatars accordingly, while maintaining the integrity of the entire field.
    In this research, we have developed an AR communication system that shares the position and posture information of physical people (e.g., smartphone terminals) participating in a communication field through recognition of a common AR target and network linkage between terminals, and reflects this information in the behavior of avatars visible from each terminal. The avatars know who and where the participants are in the communication field, and the avatar changing its pose following the movements on one participant's terminal can be seen by other participants from their own viewpoints.

  • Boundary Element Analysis Framework and Distributed H-matrix Method

    Realizing cutting-edge, large-scale, high-precision analysis

    We have developed a software framework for high-performance boundary element analysis in a parallel computing environment. We have also developed a distributed parallel H-matrix library, which is effective to accelerate a BEM analysis, and evaluated its performance on programs in various applications.

    Research

    In this study, we developed a parallel boundary element analysis framework as part of the JST CREST project on “Application Development and Execution Environment with Automatic Tuning Mechanism.” By using this framework, it is possible to develop boundary element analysis programs for large-scale parallel computing systems with a small programming cost. We also developed a library of H-matrices, which approximates dense matrices with less data using low-rank approximation. This library can be used for analysis of N-body problems in addition to boundary element analysis, and is already being used for earthquake simulation on supercomputers. There is no other H-matrix library that supports hybrid parallel processing utilizing multiple threads and processes, and this is a unique feature of this research.

    Takeshi Iwashita Professor
  • Clarifying the Physical Constants of Electron Spin Control

    Accelerating the research and development of next-generation electronic devices

    Among various semiconductor properties, we have quantitatively clarified the previously unknown “spin-orbit interactions” of n-type quantum well structures based on InGaAs semiconductors, including gate voltage dependence. This achievement will be a seed for the development of next-generation spin devices.

    Research

    Existing semiconductor devices operate through the electric charge of electrons. In addition to the electric charge, an electron also has the other property of spin, which is a magnetic property. The electron spin in a solid can be aligned in a certain direction (Fig. 1a) or rotated about a specific axis (Fig. 1bc), depending on the situation. The key to realizing next-generation electronic devices is to control such electron spin in semiconductor devices. In this study, we used indium-, gallium-, and arsenic-based field-effect transistors (Fig. 2) and performed electrical measurements in a cryogenic environment (absolute temperature of 20 mK) using a dilution refrigerator (Fig. 3). In this way, we were able to precisely determine for the first time the spin-orbit interaction coefficient, which is necessary to control electron spin (Fig. 4).

  • Classification of Genetic Information Using Machine Learning

    Predicting the binding of compounds to cell receptors

    Various receptors on the surface of cells play important roles in maintaining homeostasis and environmental responses, but it is difficult to identify compounds that can bind to them. We propose a method for narrowing down the candidates for binding compounds by using machine learning.

    Research

    Although the human genome has been deciphered and many of the genes have been elucidated, the structure and function of receptors, which play an important role in homeostasis and environmental responses, have not been fully elucidated, because most of them are membrane proteins and their expression levels are low. Many receptors, however, are expected to be major targets for drug discovery in the future because of their functional aspects, and are thought to be the factors that cause individual differences. We are applying machine learning technology to efficiently narrow down compounds that can bind to receptors.

  • Coherent Raman Scattering Endoscope

    Development of an eye for a novel endoscopic surgical support robot using coherent Raman scattering for label-free nerve visualization

    Raman scattering provides insight into molecular species and structures without staining, but its use has been limited due to its extremely weak scattering. We are developing microscopes and endoscopes that provide Raman images in real-time by using coherent Raman scattering phenomena with ultrafast lasers.

    Research

    Raman scattering has been used in chemical analysis, physical chemistry, and semiconductor research because it provides information on molecular species and structures without staining. It is also recently actively applied to the biological and medical fields. However, Raman scattering is very weak. We have developed a multifocal coherent Raman scattering microscope with integrated a wavelength-tunable synchronous picosecond laser and realized imaging at 100 frame/s, which is faster than the video rate. We also demonstrated that nerves are visualized without staining and at high speed under a rigid endoscope of 12 mm in diameter and 550 mm in length. It is expected to be a new imaging tool for nerve-sparing endoscopic surgery.

  • Communication Robot System

    Social space recognition system using dialogue activity and attention guidance system and multiple robots

    By calculating the level of activity of a dialogue between people, a robot can recognize the intensity of that dialogue space and adapt its behavior to the context. Furthermore, by applying this mechanism to the behavior of multiple robots, it will become possible to guide the user's attention.

    Research

    Our dialogue activity calculation system calculates the real-time activity level using information such as the distance between the interactants, voice data, and body movements. By using this activity level, the robot can determine whether it is allowed to enter the dialogue space or interrupt the dialogue, and can take contextually adaptive actions. Furthermore, by having multiple robots act in a way that increases the dialogue activity level for each other's actions, the user's attention (e.g., gaze) can easily be guided. Such a system for generating robot behavior using the level of dialogue activity has not been included in conventional research on social robots, and can be applied to robots at reception desks and home robots for households.

  • Control of Sedimentation and Diffusion Behavior Using the Collectivity of Particles in Liquid

    Free control of the settling behavior of particles

    We introduce technologies to accelerate the sedimentation rate and control the dispersion behavior of particles in complex channels by taking advantage of the collective nature of particles observed when there is a difference in the concentration of the suspension.

    Research

    We propose technologies to actively control the sedimentation rate and dispersion behavior by effectively using the collective nature of particles in liquid caused by concentration differences. When suspension conditions change, heterogeneously dispersed particles show collective sedimentation behavior. We aim to understand the behavior of particles near the concentration interface, which is closely associated with such collective behavior, to actively use it to promote sedimentation, control dispersion and improve transport efficiency, all of which are important in various engineering processes.