北海道大学 研究シーズ集

English

ライフサイエンス:66件

1頁の掲載件数 20 50 改頁しない 分野別アイコン凡例
  • ライフサイエンス
  • 情報通信
  • ナノテク・材料
  • ものづくり技術
  • 人文・社会科学
  • エネルギー
  • 環境
  • 観光・まちづくり
  • 北極域
  • 社会基盤
  • 共用機器
  • 水産脂質の健康機能性評価と有効利用

    水産資源を有効活用して人々の健康を守る

    水産物をはじめとした水圏生物中には、陸上生物とは異なる機能性物質が数多く含まれている。脂質やカロテノイドなどの脂溶性成分に着目し、生活習慣病予防効果の解明や食品への応用技術など、生活に役立つ健康機能食品の開発にむけた研究を行っている。

    研究の内容

    1.ワカメから分離したフコキサンチンを非アルコール性脂肪肝炎誘導マウスに経口投与した結果、肝臓で誘導される脂質蓄積や脂質酸化を抑制し、炎症性サイトカインのmRNA発現を低下させることを見出した。
    これまでの研究において、フコキサンチンの肥満予防や血糖値改善効果を明らかにしており、慢性炎症性疾患に対する予防効果が期待される。

    2.北海道で生産量の多い水産物であるホタテガイの生殖巣は、未利用の加工残滓である。
    卵巣には、EPAやDHAが高い機能性を示すリン脂質形態として含まれており、またホタテガイ特有のカロテノイドであるペクテノロンも含まれる。このような未利用物から、ホタテガイ卵巣脂質素材を調製した。
    ホタテガイ卵巣脂質素材は、潰瘍性大腸炎モデルマウスに対して予防効果を示すことを明らかにした。

  • ライフサイクルアセスメントによる陸上養殖施設の環境影響評価

    環境負荷(CO2等)排出量を評価して環境に配慮した持続可能な養殖業を目指す

    世界的に養殖生産量が急速に増加に伴い、養殖によって排出される環境負荷が懸念されている。環境負荷の排出量を評価する手法であるライフサイクルアセスメント(LCA)を用いて、陸上養殖施設のシステム全体で排出される環境負荷を評価した。

    研究の内容

    ライフサイクルアセスメント(Life Cycle Assessment; LCA):ある製品、サービスにおいて、製造から消費に排出される環境負荷要因(CO2やNOxなど)を評価する手法
    初めて国内で陸上養殖施設を対象としてLCA分析を行い、排出される環境負荷を定量的に明らかにした。

    まとめ
    ・陸上養殖施設では、CO2排出は70%近くが電力由来
    ・一般的な給餌型の養殖よりも給餌量が少ないため、餌による環境負荷排出は非常に少ない給餌、給水等、各要素が環境に与える影響を明らかにした。各要素の改善によって、環境に配慮した持続可能な養殖業に寄与できる

  • 魚類加工残渣中のコラーゲン・コンドロイチンの有効活用

    水産廃棄物に含まれるコラーゲン・コンドロイチンの生物活性評価と産業応用

    魚の加工残渣に多量に含まれるコラーゲン・コンドロイチンの生物活性を、おもに細胞培養法で解明してその成果をもとに機能性食品や機能性化粧品、組織工学用細胞足場材料、細胞培養基材等を開発し、社会実装する。

    研究の内容

    ① 魚類コラーゲンを用いた組織工学用細胞足場材料、細胞培養基材の開発
    チョウザメ浮袋コラーゲン等を材料として、細胞足場材料を開発する。これまでに、コラーゲン原線維を細胞培養プレートにコーティングする技術を開発した。通常のプレートと比べて、本コート上に播種された細胞は形態を変化させ、細胞高が大きくなった。

    ② コラーゲン、ゼラチン、およびペプチドの皮膚線維芽細胞活性化効果
    皮および頭から酵素を用いてペプチドを生産し、その抗酸化能と線維芽細胞活性化能を検定したところ、抗酸化能は頭部をまるごと酵素消化したペプチドが最も高かった。一方で、線維芽細胞活性化能はコラーゲン含量が高い試料が高かった。現在、チョウザメ皮由来高純度ゼラチンからペプチドを生産する技術を開発中。

  • 給餌効率の向上を目的とした画像認識技術によるウニの行動モニタリング

    おなかをすかしたウニをさがせ

    キタムラサキウニの行動を追跡し、索餌行動の存在について調査した。画像認識技術を用いたウニの位置推定手法を構築し、飽和給餌・無給餌個体の行動の違いから、索餌行動を検出できる可能性を示唆した。

    研究の内容

    1.画像認識技術で画像上のウニを高い確度で検出した。ウニの探索には本手法が有効と分かった。算出された重心には、ばらつきが見られた。追尾のための位置推定精度の向上を目指したい。

    2.索餌行動の有無を確認するために、絶食個体と飽食個体の行動を比較したところ、餌の浸漬による刺激で絶食個体の移動頻度が増加する傾向がみられた。無給餌期間と索餌行動発現の関係と、索餌行動発現の仕組みが分かれば給餌方法のノウハウとして利用出来る可能性がある。

  • クロロフィル分解を抑制し緑色を維持する植物の開発

    緑色が退色しない植物の可能性を探る

    クロロフィルを分解できない植物は退色せずに緑色のままです。この性質を野菜の緑色の維持などへ応用することを目指します。

    研究の内容

    植物は光合成色素のクロロフィルを持っているため緑色をしています。クロロフィルは環状構造の分子で、中心にマグネシウムを持っています。このマグネシウムがクロロフィル分解酵素(マグネシウム脱離酵素)によって外されることによりクロロフィルの分解が始まります。そのため、クロロフィル分解酵素を持たない変異体は枯れる時期になってもクロロフィルを分解せず緑色を維持しています。

  • 化学的手法による水域生態系の理解

    各種化学分析から海域,湖沼,河川の環境を評価します

    水域の生物生産性,漁業生産性は光合成生物(基礎生産者)に支えられています。基礎生産過程の理解には栄養塩類など水中の化学成分の分析と、その結果の適切な解釈が必要です。現地調査,化学分析からデータ解析までを一貫して実施します。

    研究の内容

    一例として【北海道サロマ湖のホタテガイ養殖を支援する環境調査】を紹介します
    ◆サロマ湖は日本を代表するホタテガイ養殖の場であり、湖内での年間約7千トンの生産に加え、外海へ放流する稚貝の生産場所として、オホーツク海での年間約7万トンの生産を支えています。
    ◆漁業資源を包括的に管理し、永続的に利用していくため、漁業者がホタテガイ養殖許容量を設定し、サロマ湖の漁場管理を行っています。
    ◆当研究室はサロマ湖養殖漁業協同組合と協力し、養殖許容量を算定するための環境モニタリングを実施しています。

  • 育種技術研究と遺伝資源保存技術の開発

    交雑や染色体操作技術による倍数体やクローン作出技術、凍結保存技術の研究開発

    養殖において遺伝的に同一なクローン集団を用いることで、均一な魚の生産が期待されます。天然に分布するクローン魚類における配偶子形成の仕組みを解明することで、養殖対象魚への応用を目指しています。

    研究の内容

    ①遺伝的に同じクローン誕生のメカニズム
     自然に分布するドジョウやギンブナではクローンの存在が知られており、これらのクローンも交雑によって誕生したと考えられています。自然で生じるクローン誕生メカニズムの応用や人為的な染色体操作技術を利用することで、遺伝的に均一な養殖集団の作出が可能となるため生産性の向上が期待されます。
    ②遺伝資源保存技術の開発
     個体の再生が可能な生殖細胞や配偶子を用いた遺伝資源保存はリスク分散に必須の技術です。精子は凍結保存から人工授精における利用が最も容易であるため、魚類でも広く用いられてきましたが、個体再生には卵が必要です。これらの細胞から配偶子を誘導するためには、宿主個体に移植する必要がありますが、移植個体からは保存(移植)された細胞に由来する精子や卵の生産が可能です。

  • 海洋バイオマスからのバイオ燃料生産

    海洋微生物触媒を活用した海藻からの燃料生産

    再生可能なエネルギーの開発に向けて、海洋バイオマス由来のバイオ燃料生産が期待されています。我々はマリンビブリオを核として、その生産性や基質利用能を向上させる技術基盤の理解を目指しています。

    研究の内容

    地球温暖化や資源・エネルギーの枯渇を代表とする地球環境問題への取り組みとして、海藻糖質を基質としたエネルギー生産が挙げられます。これまでに、海洋無脊椎動物から見出したマリンビブリオを活用し、高い塩分濃度条件下でも、褐藻糖質(マンニトールやアルギン酸)や、さらには海藻粉末から直接エタノールや水素の生産を可能とする技術を開発しました。遺伝子構造や遺伝子発現解析、およびマリンビブリオの代謝改変によって、バイオ燃料生産性の向上や基質利用可能性の拡大を進めています。

  • テンサイとビーツの遺伝育種学的研究

    テンサイやビーツを用いた新しい科学原理の研究

    品種改良とは、遺伝子の組み合わせを変えることです。その根幹は受粉なので、特に花粉の形成がどのように制御されているのかを研究しています。さらに、こうした仕組みがテンサイやビーツの中でどのように進化してきたのかを考えています。

    研究の内容

    1.ミトコンドリア遺伝子と核遺伝子の翻訳後相互作用に基づく花粉形成制御機構
     テンサイやビーツから、いくつかの異なるミトコンドリア型が見つかっています。それらをDNAのレベルで区別できるようにDNAマーカーを開発しました。タイプの異なるミトコンドリアの中には、ある条件下で花粉を作らなくなるものがあります。これがミトコンドリア側の特定の遺伝子産物の有無と、ある核遺伝子の有無により決まることを明らかにしました。現在、どのような機構でそうした表現型が現れるのかを研究しています。

    2.ビーツの来歴
     ビーツは、植物種としてはテンサイと同一で、両者の違いはほぼ品種の違いです。ビーツの来歴はあまり良くわかっておらず、特にテンサイとの関係が不明です。DNAマーカーを利用し、ビーツの来歴を調べています。

  • 作物の養分獲得戦略の分子機構とその応用

    植物・土壌・共生菌を軸にした養分獲得機構の解明と、その作物生産現場への応用

    主要養分元素であるリンを中心に窒素やカリウム、さらには不要元素であるセシウムについて、土壌中での動態、植物に吸収されるメカニズムについて様々な作物を用いて研究しています。

    研究の内容

    研究1:菌根形成植物のリン獲得機構に関する研究
    土壌中に存在する難利用性リンの利用を植物が植物自身または菌根菌からどのように獲得しているのか、遺伝子発現の網羅的解析技術や逆遺伝学的な手法を用いて分子レベルで研究しています。

    研究2:植物が土壌中の元素動態に与える影響に関する研究
    シロバナルーピンは土壌中のリンを根から分泌する有機酸やホスファターゼで利用可能な形へと変える能力が高いことで知られています。また、土壌中の重金属やセシウムも多く吸収することが知られており、根からの分泌物と土壌中における様々な元素の動態を根箱など(図2)を用いて調査しています。
    研究3:養分ストレスと植物の機能性成分に関する研究:どのような栽培条件が機能性成分の蓄積に寄与するのかについて土耕や水耕栽培を実施して研究を進めています。

  • 乳牛の飼養方法と生産される乳の品質

    日本全国、乳牛は様々な方法で飼養されていますが、牛乳の品質(成分的、衛生的、官能的)との関連は、明確ではありません。
    実際の酪農現場で生産された乳を解析し、乳牛の飼養方法と生産される乳の品質との関連を明らかにしています。

    研究の内容

    「乳牛の飼養方法と生乳の成分的品質との関連」
    乳牛の飼養方法は日本各地で異なり、特に北海道では気候条件などの違いにより明確に異なります。
    北海道の各地域における飼養タイプの違い(畑作型、草地型、都市近郊型)と各酪農家で生産された生乳の成分、特に乳製品の品質と関連が強い脂肪酸組成やビタミン、カロテノイドとの関連を検討しています。

    「乳牛の飼養方法と牛乳の官能的品質との関連」
    乳牛の飼養方法の違いと生乳の成分的品質との間には関連性が強いことが分かってきました。
    しかし、ヒトが実際に飲んで感じるおいしさ(味、香り、食感)との関連は明確でありません。
    そこで、乳牛の飼養方法、生乳の成分的品質、牛乳の官能的品質、これら3者間の関連を検討しています。

  • 動・植物プランクトンの群集構造

    プランクトンを通して、海の状態・変化を知る

    海洋生態系において、プランクトンは、温暖化などの影響をいち早く受けるため、良い指標となります。極域や亜寒帯域を中心に、植物および動物プランクトンの種類や量を調べ、気候変動による影響の解明を目指しています。

    研究の内容

    ①北極海の動物プランクトン群集が近年変化していることを解明。
    ②太平洋の種が北極海内で産卵・孵化していることを初発見。
    北極海の入り口であるチャクチ海で、近年、太平洋産の動物プランクトンが多くなっていることを発見しました。さらに、輸送されている太平洋産種が、北極海の中で産卵・孵化していることを世界で初めて発見しました。
    ③海氷変動により、植物プランクトンブルーム時の種と規模が変わることを解明。
    北部ベーリング海で、海氷融解タイミングが変化すると、その後の植物ブルーム構成種と規模が大きく変わることを解明しました
    ④氷河融解水流入により、栄養塩が湧昇し、ナノ鞭毛藻類を介した生産が増加する。
    グリーンランドフィヨルドで、氷河融解水がマイクロプランクトン群集に影響を与えていることを解明しました

  • LED光の集魚特性の解明

    LED光で魚の行動を制御する

    近年、水産技術の研究では集魚効果のみならず魚の行動制御への利用といった点からもLED光は注目されている。本研究では、LED光の波長(色)ごとの魚の集魚特性と行動への影響を明らかにすることを目的としている。

    研究の内容

    本研究では、自然環境下に生息する魚を対象として、光特性(色,光強度)の異なるLED光における集魚効果の変化を調べるとともに、環境要因を排除できる屋内環境において同様な種を対象として実験を行い、光特性の変化が行動に与える影響を調べ、魚を集める・忌避させる。さらに、魚の活性を増減させる光の条件を明らかにすることを目的としている。

  • 糖質代謝関連酵素の機能・構造・応用

    酵素を使った効率的糖質合成技術を開発し、健康的で豊かな食生活を支えたい

    糖質には機能性食品素材としての利用が期待されています。酵素を利用し、自然界や農産物から入手しやすい糖質を希少糖質へと効率的に変換する技術基盤を整備することで新しい機能性糖質の発見につなげたい。

    研究の内容

    セロビオース2-エピメラーゼは、β1-4二糖の還元末端グルコース残基をマンノース残基にエピメリ化する酵素です。
    私たちは、本酵素が乳糖に作用することで生成する希少オリゴ糖のエピラクトースに注目して研究してきました。本酵素を固定化したバイオリアクターの開発や、工業的なスケールでも実施可能なエピラクトースの高純度化技術をこれまでに開発しました。
    セロビオース2-エピメラーゼを利用することにより合成したエピラクトースを用いて動物実験により生理機能性を明らかにしました。
    エピラクトースは高い消化酵素耐性を持つ難消化性オリゴ糖であり、ラットを用いた実験では腸内でのビフィズス菌や乳酸菌を増やすプレバイオティクス効果が確認されました。

  • 群飼育下の乳用雌哺育牛から体調不良個体を早期検出するリアルタイムモニタリング技術の開発

    生涯生産性を高める哺育・育成からのスマート酪農を目指す

    わが国の生乳生産の安定化のためには、哺育牛の損耗低減が必要である。本研究は、哺育牛群の体温、行動、容姿の常時全頭モニタリングによって体調不良個体を早期検出する技術を開発する。

    研究の内容

    ①群飼育哺育牛の健康状態指標の全頭同時リアルタイムモニタリング技術の開発
    哺育牛の行動型、体温、容姿を牛房内の哺育牛全頭について同時に常時モニタリングする機器技術および解析技術を開発する

    ②群飼育哺育牛の中から体調不良個体を早期検出する技術の開発
    哺育牛の行動型、体温および容姿の全頭同時モニタリングデータから人工知能によって体調不良個体を検出する技術を開発する

  • 海洋深層水を用いた北方系未利用紅藻「ダルス」の周年栽培技術開発

    アルガミートの陸上栽培

    北方系紅藻 『ダルス』 はタンパク質を豊富に含有し(約40%/乾燥重量)、その主成分 『フィコエリスリン(PE)』 は血圧低下・抗酸化・脳機能改善作用を示す。本研究では 「PE高含有ダルスの周年陸上栽培」 に挑んだ。

    研究の内容

    ★ ダルスの優位性
    “大豆(畑の肉)” と同等のタンパク質を含有し、その主成分PEは血圧低下・抗酸化・脳機能改善作用を示す。
    ★ 問題点
    ① 現在、供給源は冬季に採取されるもののみ (平均13トン/年)。
    ② 水温上昇や悪天候による生育不順、他種海藻の混入。
    ③ 新規海藻栽培に伴う漁業者の負担、混在する紅藻類からダルスを選別する製造業者の労働負荷。
    ★ ダルス栽培のロバスト化
    PE含有量が多く安全な「高機能ダルス」を周年栽培するため、安定して低温で・栄養塩を豊富に含有し・清浄である海洋深層水を利用して、水温上昇や悪天候などの海洋環境に影響されない陸上施設において、その生育条件を最適化する 『ロバスト設計』 を実施。

  • 栄養素を循環させる農業を多面的に達成する

    環境にやさしい農業、を、もっと身近に、もっとやりやすく

    牛は食べた栄養素の八割近くを糞尿にしてしまう。それを土に撒き、草が伸び、牛が食べ栄養素はリサイクルされる。しかし土は保持できない栄養素を環境中へ排出する。これら目に見えにくい循環を理解し是正していく。

    研究の内容

    農業に由来する環境負荷、例えば水質悪化や温室効果ガス排出は近年大きな問題となっています。これらを是正するには、多面的な研究が必要です。例えば土壌中に保持される栄養素を理解するには微生物学的知識が必要ですし、作物生育のムラなどが起きていることを判別するには画像解析技術などが役立ちます。また、農業が環境負荷を引き起こす原因を根本的に理解するには、農業現場でどのような人がどう利益を得ているのかを理解する必要があります。環境生命地球化学研究室では、「微生物学」、「衛星画像解析」、「農家データ解析」を大きな三本の柱としながら、農場内で、地域で、栄養素を確実に循環させ、環境負荷を極限まで減らした農業体系の確立を目指しています。

  • 漁具の水中形状・動態可視化技術(NaLA)

    漁具の水中動態をPCで可視化

    漁具の設計図と海況条件をPCに入力することで,様々な漁具の水中での形状やその動き,各部材に作用する力を数値シミュレーション技術により可視化することができます。
    (企業との共同研究により研究開発が行われています)

    研究の内容

    漁具の水中形状や動態をPCで数値シミュレーションにより予測し、可視化することにより、
    ・新しい漁具や施設を開発するため実機製作前に評価できる
    ・操業中の漁具の状態をモニタリングし漁労作業を支援する
    ・設置海域での施設の耐流性・耐波性を評価する
    など、漁業生産施設の操業や設計の最適化を実現します。

  • レッドビートの生体影響を評価するヒト対象研究

    レッドビート摂取による寒冷下の末梢循環促進と巧緻作業能力改善を解明

    道内でも生産されるレッドビート(図1)の濃縮ドリンクの機能性を評価するヒト介入試験を行い、寒冷環境下での指先の冷えが緩和され、巧緻作業能力が改善されるエビデンスが示されました。

    研究の内容

    成人男性を対象に、レッドビートドリンクまたは水を単回摂取させた後、手部を冷水に30分間浸漬させて冷却し、その後の回復過程における指先の皮膚温、皮膚血流、血圧を測定しました。同時に、指先の巧緻性や調整力を評価する作業課題を行いました(図2)。その結果、水条件に比べてレッドビート条件で、冷却後の指先の血流と皮膚温の回復が促進され、また、巧緻作業パフォーマンスの改善が示されました。今後の課題として、冷凍庫内や冬季屋外作業現場などを想定した寒冷環境滞在時の生体応答評価や、レッドビートの長期摂取による影響のヒト介入試験を行う必要があります。

    若林 斉 准教授 Hitoshi Wakabayashi
    博士(体育科学)
  • 植物性色素の生理機能とその応用

    植物色素の力で植物もヒトもストレスに強くなる!?

    植物色素の一種であるベタレインの、植物細胞内における生理機能として、ストレス負荷により蓄積する活性酸素(ROS), 活性窒素(RNS)消去能及び機構解明をおこなう。植物の環境ストレスに強い植物開発への応用を目指している。

    研究の内容

    寒冷地作物ビーツに含まれる赤や黄色のベタレイン色素は抗酸化や血圧降下作用など多機能性が示唆されるが、ベタレインは非常に不安定なため精製度の高いベタレインを用いた検証は非常に少なくベタレイン色素自身の機能詳細は不明である。
    そこで、ビーツに含まれ得るベタレイン色素(ベタシアニン・ベタキサンチン)の高純度精製法を確立した。得られた純度の高いベタレイン色素を用いて、活性酸素や活性窒素の消去能を in vitro または in vivoで測定することにより、種々のストレスに対する細胞保護機能を評価し、機能性食品開発や環境ストレスに強い作物の作出を目指している。

  • 食品ナノ構造の非破壊スローオペランド解析

    大型施設でしかできないと思われていたこと。実は北大でできます

    食品はいくつもの相が混合した「混ざりもの」です。その「混ざり方」は食感を左右する重要な要素です。製造プロセスや保存プロセスで起きる「混ざり方」の変化を非破壊・連続的に観測します。

    研究の内容

    ほとんどの食品は水を含む複数の相(同一の結晶構造・分子構造を持つ領域)が混合した「混ざりもの(複相組織)」です。「混ざりもの」の食感はそれぞれの相の性質だけではなく、構成する相がどのような大きさ(スケール)でどのくらいの個数が存在しているかという「混ざり方」も大きな影響を及ぼしています。構成している相は原料を決めるとある程度決まってきます。例えばモッツアレラチーズといえば、どの製品にも共通する味や食感があります。一方で、味や食感は製造者によって明確な違いがあります。中でも食感については、その違いを決定する最重要な要素が「混ざり方」であり、製造プロセスにより大きな影響を受けます。

  • 農水産業のDXを支える中心温度測定用食肉模擬装置

    実肉を使用しない食肉中心温度測定用デバイス

    食用動物の食肉を対象に、その中心温度を把握するための温度測定装置を開発した。本装置のプローブ周囲には、魚・牛・豚・鶏等の食用動物の食肉を模擬した比熱及び形状を有する材料を配置しており、実際の食肉に近い中心温度変化をリアルタイムで取得できる。

    • 図1 開発中の中心温度測定用食肉模擬装置の構成図

    • 図2 開発中の中心温度測定用食肉模擬装置と鮮度評価システムの関係

    研究の内容

    一般的に食肉の貯蔵温度管理は、食材が貯蔵されている貯蔵庫内の温度を計測し、温度管理を行っている。しかし、食肉を高鮮度状態に保つためには、その中心温度を計測し温度管理をすることが重要であるが、現状のサーモグラフィーカメラや温度センサーでは、その表面温度しか測定ができない。
    そこで、当研究室では、食用動物の食肉を模擬した比熱及び形状を有するプローブを作製することにより、食肉の中心温度変化を模擬できる装置を開発した。これにより、食肉を傷つけることなく、測定したい食肉の中心温度を取得することが可能となり、その温度変化を基に、理想的な温度管理が可能となる。また、食用動物の鮮度と食べ頃の可視化装置『MIRASAL(見らさる)』と本模擬装置を連携することで、実際の食肉を使用することなく、鮮度評価を行うことが可能となる。

  • 鮮度保持用液状氷の質と量の同時最適化装置

    食品の長期鮮度保持のための液状氷最適化装置

    単純な熱容量計算で食品用液状氷〔スラリーアイス(塩分含有水氷)又は無塩分水氷〕の必要最小量や、保管用容器の総括伝熱係数(容器放熱量パラメータ)を用いスラリーアイス温度を決定する塩分濃度・水/氷混合比及び貯蔵可能時間を算出する装置を開発した。

    • 図 スラリーアイスの温度の実測値と計算値の比較(左上図:キビナゴ、左下図:ハタハタ)とスラリーアイス中の氷量の実測値と計算値の比較(右上図:キビナゴ、右下図:ハタハタ(計算値のみ))

    研究の内容

    これまで、水産動物の鮮度保持に有用なスラリーアイスの製造量は、貯蔵時間を考慮した計算法が無かったため、多くの場合、過剰な量が製造され使用されてきた。そこで当研究室では、先に記載したように、保管用容器の総括伝熱係数を用いて、その場で迅速に、スラリーアイスの質(塩分濃度や水/氷混合比)と量(貯蔵可能時間)を同時に最適化する装置を開発した。本法は、真水由来の塩分を含まない液状氷の製造にも適用可能なため、水産動物以外の食品(野菜・果物・畜産動物)にも利用でき、現在その発明内容の権利化などに取り組んでいる。

  • 食用動物の鮮度と食べ頃の可視化装置『MIRASAL(見らさる)』

    安全・安心を実現する食用動物の鮮度と食べ頃の評価装置

    我々は、産業技術総合研究所と共同で、致死後の食用動物(水産動物や畜産動物)の任意部位における分解成分の濃度の経時変化をシミュレーション法により求め、鮮度と食べ頃を評価するための可視化装置『MIRASAL』を開発した。

    • 図1 開発中の鮮度評価装置の入力画面と計算結果の例

    • 図2 開発中のMIRASALウェブサイト

    研究の内容

    魚介類の産地および消費地における卸売市場では、鮮度が取引価格を決定する1つの重要な基準となっており、その評価指標としてK値が提唱されている。しかし、その値は死後の水産動物の任意の部位をサンプリングし、種々の前処理後に成分分析を行い算出するため、流通現場でのリアルタイム評価(把握)は出来ない。当研究室では、妥当なシミュレーション法による課題解決を考え、上記したような手法を用い、魚介類の種類や大きさ、死後の経過時間や保存温度などの各種情報から、鮮度と食べ頃を評価できる装置を開発し、現在その発明内容の権利化や携帯性の向上(スマートフォン等での利用)などを進めている。本装置『MIRASAL』は、牛肉・鶏肉・豚肉といった畜産動物にも適用可能である。

  • 魚類の細胞を生殖細胞化させる研究

    養殖魚の借腹生産や品種改良の効率化を目指して

    動物の初期胚の細胞の多くは身体を構成する体細胞へ分化し、一部の細胞のみが精子と卵の起源となる生殖細胞へ分化します。当研究室では、魚類初期胚のほぼ全ての細胞を「生殖細胞化」できる技術を開発し、水産業への応用研究を進めています。

    研究の内容

    近年、マグロのように産業的な価値は高いが、飼育が難しい魚の配偶子(精子と卵)を、飼育が容易な魚に作らせる「借腹生産」技術の開発が進められています。効率的な借腹生産を実現する為には、ドナー魚種の生殖細胞を標識・選別・濃縮して、ホストとなる魚に移植する必要があります。しかし、生殖細胞は個体発生の初期にごく一部の細胞集団として出現するため、生殖細胞の選別には高度な技術が必要でした。
    当研究室では、魚類初期胚の全ての細胞、もしくは、特定の細胞を「生殖細胞化」できる技術を開発しました。生殖細胞化した細胞は、選別なしにホストに移植できるため、効率的な借腹生産技術につながります。また、ゲノム編集や染色体操作技術を組み合わせることで、生殖細胞のみの遺伝的改変が可能となり、効率的に目的とする実験魚や品種の作出が可能となります。

  • 耐水性が高く透明な酸化グラフェン/抗菌・抗ウイルスコーティング

    ナノカーボン材料の酸化グラフェンと,抗菌・抗ウイルス剤を複合化した,新しいコーティング法を開発しました。耐水性が高く,透明で基材の色に影響を与えないことから,水周り衛生に向けた新しいアプローチとして期待できます。

    • 酸化グラフェン抗菌・抗ウイルスコーティングの方法

    • 酸化グラフェン(GO)と抗菌・抗ウイルス剤(界面活性剤:CSAA)複合膜の耐水性と抗菌特性のメカニズム

    研究の内容

    微生物は水の存在する湿潤環境を好むことから,手洗い設備等の抗菌・抗ウイルス性が強く求められています。しかし,これまで水周り環境に,簡便かつ長期的に安定して抗菌・抗ウイルス効果を得ることは出来ませんでした。酸化グラフェンは,厚さ約1nmのシート構造を持つナノカーボン材料で,多数の酸素官能基を有することから様々な分子やポリマーと強く相互作用します。この性質を利用して,基材の表面に酸化グラフェン超薄膜を強固に付着させ,さらに抗菌・抗ウイルス剤を結合させる新しいコーティング技術を開発しました。酸化グラフェン膜は透明で基材の色味を損なうことも無く,基材との結合も強いことから水で洗っても脱落しません。また水中で1か月間保管した場合でも,酸化グラフェン膜は剥離脱落することなく基材の表面に残存していることを確認しました。

    宮治 裕史 教授 Hirofumi Miyaji
    博士(歯学)
  • 生体成分の代謝と未病

    生体成分の代謝を考慮した非感染性病態発症機構の解明:食品の機能性評価系としての応用

    生体成分(胆汁酸やミネラルなど)の代謝解析を基盤として、各種疾患の発症機構解明と実験動物を用いた未病モデルの確立に関する研究を行っています。食を介する疾患発症予防の作用点解明を目指しています。

    研究の内容

    加齢と摂取ネルギー過多により肝臓で合成される胆汁酸の内訳は変動し、その状態での胆汁酸の組成・濃度は概ね特定されます。したがって、特定の胆汁酸を実験動物にごく少量与えることで、この状況での胆汁酸環境を模倣した状態を構築することができます。その結果、脂肪肝や関連病態が生じることを見つけました。また、亜鉛の軽度欠乏が潰瘍性大腸炎の未病モデルとなることを見出しました。これらのことは、食生活の偏り(過剰・不足)により継続的に生ずる軽微な代謝変化が感染性・非感染性疾患の発症に関与すること、食事成分の制御で当該状況を模倣した実験系自体が「未病」のモデルとなり得ることを示しています。現在、各種未病モデルの構築を行うとともに、それらの発症メカニズム解析を実施しています。さらに、これらの系を用いて食品の機能性評価を行なっています。

  • オプトジェティクスによる新規医療技術の開発

    光の特性を利用した深部癌治療法、創傷治癒・組織再生促進療法の開発

    様々な波長の光を利用して、生体内表面から深部にいたる病変(癌、損傷)を治療する技術を開発する。光による遺伝子発現の制御技術(オプトジェティクス)を基本技術として、さらに波長の異なる光を組み合わせることで体表から深部病変の治療法を開発する。

    • 様々な波長の光を利用した生体深部癌の治療法

    • 様々な波長の光を利用した生体組織の修復・再生促進療法

    研究の内容

    光照射においてはオン・オフをコントロールすることは容易であり、優れた時間分解能で操作することが可能である。また、狙った細胞に限定して光を照射することも可能であることから、空間分解能という意味でも優位性がある。一方、光の送達深度には限界がある。例えば、多くの光遺伝学的手法で頻用される青色光(400-500nm)は、生体透過性が低く深部組織への光照射は困難である。しかしながら、生体透過性が優れている近赤外光を利用することで、深部組織も治療ターゲットになり得ると期待される。
    我々は、生体透過性が高く組織深部へ到達可能なX線領域あるいは近赤外領域の光による直接的あるいは間接的な遺伝子発現制御システムを研究しており、それにより癌細胞死を誘導あるいは傷害組織を再生する遺伝子・蛋白質を細胞内に発現させることを試みている。

  • 独創的糖鎖誘導体ライブラリの作成技術 × どこでも使用可能なマイクロアレイ解析システム

    糖鎖自動合成技術を活用した独創的ライブラリ × オンサイト医療や研究を支えるマイクロアレイ技術

    糖鎖関連相互作用は感染症やがん診断等において重要な標的である。糖鎖自動合成技術開発の過程で構築・蓄積した糖鎖、複合糖質、糖質関連阻害剤、およびその誘導体ライブラリの活用法としてどこでも利用可能なマイクロアレイ装置の開発を行った。

    • 糖鎖自動合成技術からの飛躍

    • どこでもマイクロアレイの未来

    研究の内容

    マイクロアレイ技術は構造や配列が明確な多数の化合物ライブラリと検体成分との相互作用を一斉比較解析可能な技術です。また、我々は糖鎖自動合成技術を核とした独自糖質化合物ライブラリをマイクロアレイ解析用分子として設計・制作するための最先端技術を有しています。糖質が有する相互作用情報は、血液型やO157等の血清型、がん診断マーカー(CA○○○)など、体外診断用バイオマーカーとして幅広く使用されています。さらに、感染症の変異に伴う感染パターン解析やワクチン効果の詳細な解析など、検体収取とマイクロアレイ解析をスマートホンを端末としてその場で行い、オンライン診断に使用可能な独立電源型モバイル解析装置の開発に成功しました。

    比能 洋 教授 次世代物質生命科学研究センター 副センター長 Hiroshi Hinou
    博士(工学)
  • 糖タンパク質から直接糖鎖パターンを解析する技術 

    ~【世界初】前処理不要の糖鎖選択的イオン化技術~ (北大単独出願、単独発明者技術です)

    糖タンパク質や体液のような複雑な高分子や混合物中の糖鎖成分をMALDI法により選択的にイオン化する世界初の質量分析技術を発見しました。この技術は卵白や体液のような複雑な混合物中の糖鎖成分の直接解析にも利用可能であることも実証しました。

    • 従来の直接プロテオミクスと同一手順で直接グライコミクスを実現!糖タンパク質製剤の品質管理や糖質資源探索に新たな道を提供できます!

    研究の内容

    糖タンパク質上の糖鎖パターンはそのタンパク質の体内動態を決定する因子であり、重要なバイオマーカーです。これまで糖鎖パターン解析には糖鎖の切り出し、化学修飾、精製等の煩雑な操作が必要でした。質量分析は微量の生体分子を直接イオン化可能な超高感度高分解能分析技術です。しかし、糖タンパク質のような複合糖質や体液のような複雑な高分子や混合物中の糖鎖成分を選択的にイオン化する方法が存在していなかったため、先述の煩雑な前処理を必要としていました。我々は世界初の複合糖質糖鎖成分の選択的開裂と選択的イオン化を同時に達成し、糖タンパク質上の糖鎖パターンの直接解析に成功しました。また、この技術により卵白など複雑な混合物中の糖鎖パターンも直接解析可能となることを実証しました。

    比能 洋 教授 次世代物質生命科学研究センター 副センター長 Hiroshi Hinou
    博士(工学)
  • 独自の機能性脂質の開発を基盤としたin vivo核酸送達システム

    世界トップクラスの核酸導入能と安全性の両立

    siRNAの安全かつ効率的なin vivo送達を実現する独自の機能性脂質群を開発した。本脂質を含む脂質ナノ粒子は優れたエンドソーム脱出能力に起因する肝細胞への世界トップクラスのsiRNA導入効率および生分解性に起因する高い安全性を示した。

    研究の内容

    siRNAの実用化には優れた送達技術の開発がカギであるが、その送達効率には大きな伸びしろが残されている。また、実用性の観点では広い安全治療域を確保することも重要となる。さらに、特定の用途に限定されず、目的に応じた適切な製剤を提供可能なプラットフォーム技術の開発が強く望まれる。それらの実現のため、独自のpH感受性カチオン性脂質群を開発した。脂質ナノ粒子の体内動態に重要な因子である酸乖離定数の調節を実現し、標的に応じた分子設計を可能とした。また、新規脂質CL4H6を含む脂質ナノ粒子は肝細胞において世界トップクラスの効率で遺伝子発現抑制を誘導した。また、50%抑制投与量の約3,000倍もの投与量においても顕著な肝毒性は認められず、高い安全性が確認された。CL4H6はsiRNA送達後に速やかに分解除去された。

    佐藤 悠介 准教授 Yusuke Sato
    博士(生命科学)
  • タンパク質代謝低下による新しい老化モデル

    加齢により様々な代謝の変化が生じます。いわゆる「代謝が低下」した状態は老化や生活習慣病、老化関連疾患の発症リスクを高めます。タンパク質代謝の低下により老化を示すマウスモデルを開発しました。

    研究の内容

    細胞内タンパク質の分解に働くプロテアソームは種を越えて細胞に発現し、生体機能の維持に重要です。老齢個体ではプロテアソーム活性が低下し、加齢によるプロテアソームの機能低下が老化や老化関連疾患の発症に関与します。本研究ではプロテアソーム活性が低下し、老化をきたすマウスモデルを作製致しました。本モデルに高脂肪食を負荷すると脂肪肝が増悪し、タバコ煙を負荷すると肺疾患をきたします。本モデルを応用することで、様々なヒト疾患の原因となるタンパク質の異常、ターゲット分子が解明できます。

    外丸 詩野 准教授 Utano Tomaru
    医学博士
  • ストレスによる病気の治療薬とバイオマーカーの開発

    「病は気から」の分子機構に迫る分子心理免疫学

    過労、不眠による突然死など社会的に広く問題となっている慢性的なストレスが、特定の神経回路の活性化を介して臓器障害と突然死をマウスに誘導する分子機構を明らかにしました。この系を利用して、ストレスに起因する病気の治療標的を探索できます。

    • 慢性ストレス負荷により室傍核(PVN)での交感神経が活性化(①)し,第3脳室,視床,海馬の境界部にある特定血管においてケモカインというタンパク質が産生され,血液内に存在する中枢神経系抗原を認識する自己反応性免疫細胞が血液脳関門を超えてこの特定血管周囲に集まり、微小炎症が誘導される。これが契機となり、新たな神経回路(②から⑤)が活性化し、胃・十二指腸を含む上部消化管での炎症が誘導されることで、心臓の機能不全により突然死が起こる。今回の研究による新たなブレークスルーは、「脳の特定血管での微小炎症が、新たな神経回路の活性化を誘導することで末梢臓器の機能障害が誘導されること」が明らかとなった点であり、ストレスゲートウェイ反射と呼んでいる。すでに様々な薬剤がこの実験系でテストされていて、消化管出血と突然死を防止する薬剤とその作用部位の例を示す。
      ストレスにて脳内特定血管で発現上昇する遺伝子群をすでに同定しており、その中で6つの遺伝子(C2CD4D、VSTM2L、VSTM2A、TMEM5、LY6G6C、ADRA2C)は、抗体を使った抑制によってストレス後の突然死が抑制された。

    研究の内容

    私たちは、ストレスと病気の関連を研究しています。最近、慢性ストレスを加えたマウスに中枢神経抗原に対する自己反応性T細胞を移入すると、マウスが突然死しました。死因は、ヒトと同様に胃・十二指腸の出血による心不全が原因でした。ストレス特異的な神経回路活性化にて脳内の特定血管に移入T細胞などが集まり微小炎症が誘導され、これを起点に活性化する新たな神経回路がこの胃腸障害・心不全を引き起こしました。これまで、分子機構が解明されているストレスの動物モデルは無く、本モデルは、ストレスに起因する病気の新たな薬剤のスクリーニングに有用です。さらに、この系を用いて、ストレス時に脳内特定血管で発現上昇する分子群を同定し、それら分子に対する抗体が突然死を抑制しました。また、現在、ヒトでも自己反応性T細胞のマーカー候補を同定しています。

    村上 正晃 教授 Masaaki Murakami
    医学博士
  • 未修飾シアリル化糖鎖および複合糖質の高感度・高分解能構造解析を実現するMALDIマトリックス

    シアル酸のカルボン酸部位を修飾することなく、シアリル化糖鎖及び複合糖質をイオン化し、シアル酸残基が脱離することなく高感度かつ高分解能(リフレクターモード)で解析可能なマトリックスを開発した

    • 従来のマトリックスを用いた解析結果
      (低感度かつピークが複雑化する)

    • 新規マトリックスを用いて同一サンプルを同一濃度で解析した結果(感度100倍以上を実現)

    • 本マトリックスを用いてTOF/TOF解析をするとシアル酸以外に還元末端側糖残基も優先的に開裂する

    • 疑似MS/MS/MS解析により糖ペプチド糖鎖の詳細な配列解析が可能となる

    研究の内容

    糖鎖および複合糖質のシアリル化(シアル酸の付加)は発生、分化、疾患、感染、免疫等の様々な生命現象に関与する重要なバイオマーカーである。MALDI(マトリクス支援レーザー脱離イオン化)法は簡便かつ高感度なソフトイオン化法であるが、未修飾のシアル酸を有する糖鎖はイオン化効率が低く、さらにシアル酸の開裂等によりスペクトルが複雑化するという問題が存在する。本技術では、従来のマトリックスに対する添加系を改良することにより、一切の修飾工程を経ることなくシアリル化糖鎖及び複合糖質を、シアル酸の脱離を抑制した状態で高感度・高分解能測定に成功した。開裂パターン変化と高感度化に伴い、TOF/TOF解析や疑似MS3解析等も超微量サンプルで実施可能となった。本法は化学修飾と分離工程が不要であり、反応追跡や迅速検体解析が可能となる。

    比能 洋 教授 次世代物質生命科学研究センター 副センター長 Hiroshi Hinou
    博士(工学)
  • 生物時計を考慮した健康的な生活リズムをデザインするための基盤研究

    生物時計を考慮した健康的な生活・労働環境の提言

    日本人は世界的にみても睡眠時間が短く、睡眠障害による経済損失は約6兆円/年と試算されています。当研究室の専門領域は、睡眠に深く関わる生物時計を研究対象とした時間生物学です。時間生物学研究を推進し、国民の健康に寄与することを目指しています。

    • 当研究室の研究ビジョン.生物時計を調節し健康的な生活を送るためには3つの時計を調節することが重要です。私たちが生来持っている生物時計、生物時計を調節する環境因子である太陽光を制御する環境時計、そして私たちの生活リズムを規定する社会時計です。しかし、私たちの社会を見渡すと、生物時計に逆らった生活をおくるものも少なくはなく、内的同調を保つようなサポートが必要です。

    研究の内容

    生物時計は、私たちが毎日昼間に十分活動し、夜間に良質な睡眠をとれるように行動(睡眠と覚醒のタイミング)と生体内の環境を調節する重要な生体戦略です。しかし、現代社会では夜間交替勤務、時差飛行、24時間労働等により生物時計に逆らった生活を余儀なくされるものも少なくありません。私たちが生涯にわたって健康な生活を送るには、生物時計の構造および機能を理解すると共に、ライフステージや各自の生活習慣に応じて生活リズムを積極的にデザインし、最適化していくことが求められています。当研究室では、光と運動が生物時計に与える影響のメカニズム、時間栄養学を応用した効果的な栄養食事指導法の開発、睡眠・生体リズムの季節変動と生理機能の関連性を明らかにするための研究を進めています。

  • カルニチンを用いた胸部外科術後の心房細動予防法の開発

    心臓弁膜症においては周術期のカルニチン内服が術後心房細動 (POAF) を抑制しうるかどうかを無作為割り付け多施設共同研究により明らかにする。肺癌および食道癌においては類似の先行研究がないため、単群介入試験を行う。

    • カルニチン内用液

    • 研究計画

    研究の内容

    胸部外科術後の心房細動(POAF)の頻度は高く、脳梗塞・心不全・感染症の増加につながり、入院期間の延長をもたらす点で問題となっている。唯一β遮断薬が有効とされるがその有効率は50%未満であり、副作用の点から使用できない場合も多い。脂肪酸代謝改善薬であるカルニチン製剤は近年、その抗炎症作用や脂肪酸代謝改善効果などから心筋梗塞後や冠動脈バイパス術後の不整脈抑制効果が報告されている。本プロジェクトでは、心臓弁膜症においては周術期のカルニチン内服がPOAFを抑制しうるかどうかを無作為割り付け多施設共同研究により明らかにする。肺癌および食道癌においては、単群介入試験により安全性とPOAF減少率の検討を行い、今後の無作為割り付け試験の検討に役立てる。

    新宮 康栄 講師 Yasushige Shingu
    博士(医学)
  • バイオ材料で作ったマイクロ・ナノパターン

    生体構造を模倣したバイオ系マイクロ・ナノパターンで
    細胞培養ツールや組織再生へ応用を目指す

    コラーゲンなどのバイオ材料や歯科材料を用いて、生体構造を模倣したマイクロ・ナノパターンを作製しています。パターン形状や材質の種類により細胞機能向上へと繋がります。新しい可能性を追求しながら細胞培養ツールや歯周組織再生への応用を目指します。

    研究の内容

    本研究ではナノインプリント法を利用し典型的なバイオマテリアルをパターン化しています。設計したマイクロ・ナノスケールの形状により細胞機能を制御し、新規細胞培養ツールや組織再生へと繋げたいと考えています。
    ●従来技術との比較: これまで例が少ないバイオ材料にて規則正しいパターンを作製することに特徴があり、新しい機能発現が期待されます。 (*従来:不規則・平面or工業的プラスチック)
    ●効果: 平面よりもパターン化により細胞付着数や伸展度合が大幅に向上します。溝形状では細胞を簡単に配列させることができます。それにより、細胞外マトリックス(ECM)の3D構築にも繋がります。
    ●今後: パターン化材料を平面だけでなく2.5次元、3次元へ展開し、さらに階層化することにより、生体に近い構造を持つ組織再生を目指します。

  • 光ファイバを利用した小型線量計の開発

    極微小シンチレータと光ファイバを組み合わせた
    超小型線量計を放射線治療・診断分野へ応用

    近年、X線透視による重篤な皮膚障害に対する被曝防護への関心が高まっている。本研究では、晩発性放射線障害予防を目的として、光ファイバの先端に極微小プラスチックシンチレータを取り付けた単純な構造をした、X線透視画像に写らない線量計を開発した。

    研究の内容

    X線透視を伴う血管内治療(IVR; Interventional Radiology)では、長時間にわたるX線透視を行われる。心筋梗塞などでは繰り返し手術を受ける可能性があるため、潰瘍などの重篤な皮膚障害が発生する可能性がある。従来の線量計は、透視に映るものや検出部分の体積が大きいなどの問題があった。特に、エネルギー依存性が測定の精度に影響を及ぼすため、小型でエネルギー依存性が少なく、かつ透視に映らない線量計は存在しなかったが、本研究にて開発を行ったSOF線量計は、センサー部分は生体と密度が近いためにX線透視下で全く映らないという特徴がある。また、現時点で60~150kVの範囲において感度変化5%以内を達成しているが、さらに感度変化を小さくするために、企業と共同でセンサー物質の改良を進めている。

    石川 正純 教授 Masayori Ishikawa
    博士(エネルギー科学)
  • ポリフェノールによる水の凍結抑制

    ポリフェノールによる過冷却促進効果の応用を目指して

    一部のポリフェノールが氷核物質と共存すると、氷核活性を抑制して結果的に過冷却状態を維持します。この凍結抑制効果(過冷却促進活性)のメカニズムの解明やいろいろな条件下での凍結防止を試みています。

    研究の内容

    ヨウ化銀や氷核細菌は、水の不均質核生成を促して水の凍結を促進します。このような氷核活性に対して抑制効果を示す化合物は、これまでにもいくつか報告されていますが、本研究で用いているポリフェノールは比較的低分子であり、共存する氷核物質の活性を数mMという低濃度で抑えて水溶液の凍結温度を数度低下させることが可能です。また、振動などの物理的刺激が加えられても過冷却を維持する効果もあります。このようなポリフェノール類は様々な植物にも含まれ、それらを産業利用するための条件検討を重ねています。例えば、動植物細胞や食品などの氷点下保存や農作物の凍霜害防止などは興味深いテーマです。凍結抑制効果はいろいろな要因の影響を受けるので、既存の凍結抑制物質の併用も含め、応用の可能性を検討し、氷核活性を阻害するメカニズムの解明も試みています。

    荒川 圭太 准教授 Keita Arakawa
    博士(農学)
  • 受容体結合プロレニン系を標的とした
    新規阻害薬の開発

    慢性炎症・血管新生などの病態形成に関与する
    (プロ)レニン受容体を阻害する医薬品の開発

    糖尿病網膜症をはじめとする網脈絡膜疾患の病態形成におけるレニン・アンジオテンシン系(RAS)の関与の解明や、さらにRASの上流にあたる(プロ)レニン受容体に対する阻害薬の開発から基礎研究に至るまで、広い視野に立った取り組みを行っています。

    • 網膜受容体結合プロレニン系(網膜RAPS)と硝子体レニン・アンジオテンシン系(硝子体RAS)

    研究の内容

    加齢黄斑変性や糖尿病網膜症は、主要な中途失明原因の網脈絡膜疾患であり、生活習慣病に合併した慢性炎症性疾患と位置づけられています。しかしながら、未だ根本的な治療法の開発・疾患発症機序の解明には至っていません。我々は、これまでに生活習慣病での臓器障害において受容体結合プロレニン系(RAPS)が炎症・血管新生病態の上流で疾患の分子病態を制御していることを報告してきました。そこで現在我々は、受容体結合プロレニン系の中心に位置する(プロ)レニン受容体を標的にして、網羅的な低分子化合物スクリーニングや医薬分子設計法などの技術を用いた創薬を視野に入れた基盤研究を展開しています。さらに疾患動物モデルを用い、(プロ)レニン受容体の機能解明、および生理的機能への影響を最小限にしながら病態への早期介入治療戦略の確立を試みています。

  • 一倍体性が動物個体発生に及ぼす影響の理解

    産業利用可能な一倍体制御技術の確立を目指して

    ゲノムを1セットしか持たない一倍体状態が動物個体発生に重篤な障害をもたらす仕組みを解明し、遺伝子工学や品種改良に利用可能な一倍体個体作成技術の確立を目指す。

    研究の内容

    動物細胞の体をつくる細胞は、母方父方2セットのゲノムを持つ「二倍体」です。一方、通常そのままでは増殖を行わない未受精卵を賦活化し、個体発生を誘導すると(単為発生)、母方のゲノムしか持たない「一倍体」胚となります。そこから一倍体個体が得られれば、遺伝子工学や純系作成に大変有用ですが、脊椎動物一般において一倍体胚は「半数性症候群」と呼ばれる初期発生異常により死滅するため、一倍体個体技術の利用は実現していません。私たちは、ヒト培養細胞およびマウス初期胚をモデルに、分子細胞生物学の技術を駆使して、一倍体状態が、発生過程に及ぼす影響を細胞レベルで明らかにすることを目指しています。その成果をもとに、「半数性症候群」を解消する細胞操作法を確立し、安定な形質を持ち生存が可能な一倍体個体の作成を可能にすることを目指しています。

  • 遺伝子情報の機械学習による分類

    細胞の受容体と化合物の結合予測

    細胞の表面の様々な受容体は恒常性の維持や環境応答に重要な役割を果たしていますが、結合しうる化合物を明らかにするのは難しいとされています。機械学習によって結合化合物の候補を絞る方法を提案しています。

    • 各種の匂い物質に対する受容の機械学習による分類。

    • 立体構造モデリングによる検証。

    研究の内容

    ヒトゲノムが解読され、遺伝子の多くが解明されつつありますが、恒常性維持や環境応答に重要な役割を果たす受容体は、多くが膜タンパク質であり発現量も少ないことなどから、構造や機能の解明がなかなか進んでいません。一方、受容体の多くはその機能的な側面から、これからの創薬の主要ターゲットと期待されており、個人差を生み出す要因であると考えられます。受容体に結合しうる化合物を効率よく絞り込むため、機械学習技術を応用しています。

  • 分子標的治療薬の感受性試験

    蛍光バイオイメージングを用いて個々の細胞における薬剤反応性を可視化する技術

    蛍光バイオイメージングはシングルセルレベルでの細胞の振る舞いを可視化する技術です。本法ではイメージング技術を応用し、薬剤に対する反応性と耐性の有無を可視化、将来の患者の薬剤応答性を予測することを実現しました。

    • BCR-ABL活性を測定する蛍光バイオセンサーPickles

    • Picklesによるシングルセルレベルでの薬効評価

    • 本技術による薬効評価判定例。青は本検査で感受性と判定された症例、赤は抵抗性と判定された症例の経過。太線はそれぞれの平均を示す。

    研究の内容

    本診断技術では、蛍光タンパク質とフェルスター共鳴エネルギー移動(Förster resonance energy transfer, FRET)の原理を用いた蛍光バイオセンサーを用います。このバイオセンサーによりシングルセルレベルでの薬剤反応性を可視化することで、極少数の薬剤耐性細胞が検出可能となりました。結果として、従来技術では成しえなかった投与後の臨床経過との高い一致率と将来の薬剤応答性の予測を達成しました。本技術は世界初の蛍光タンパク質の臨床応用例であるとともに、効果が約束された治療法選択による安全性担保、患者の経済的負担軽減、医療費抑制による医療経済的効果などにつながると期待されます。現在のところ慢性骨髄性白血病という血液のがんをモデルにプロジェクトを進めていますが、原理的には多くのがんに応用可能です。

  • 肝臓のストレスを抑えて、肝臓病を予防!

    肝臓の生活習慣病(脂肪肝、肝炎、肝硬変)にならないために

    肝臓を中心とした臓器ストレスの分子機構を解析し、生活習慣病の診断・予防・治療に向けた研究を進めています。我々独自の光イメージング技術を用いてダイナミックな解析を行い、新しい視点から機能性食品の探索・新薬の開発を目指しています。

    • 非アルコール性脂肪性肝炎(NASH)は、単純な肝の脂肪化をきっかけとして、様々なメカニズムが付加的にはたらくことで、脂肪性肝炎・肝硬変・肝癌に進展していくと考えられています。各プロセスにおける病態進行のキー分子を突き止め、それらを制御する食品・薬剤の探索を試みています。

    • 私達は、生体イメージング法をもちいて肝臓のストレスを実際に可視化することで、様々な要因による肝傷害・肝炎の促進を生体レベルでスクリーニングしています。

    研究の内容

    近年、脂肪肝・脂肪性肝炎等の生活習慣に関連する疾患は確実に増加してきています。これらの病態は進行が遅く自覚症状が少ないため一般に疾患意識が薄く、予防も困難です。しかしながら、これらは肝硬変・肝癌へ進行することが知られていて、予防、進行の抑制が重要です。
    私達は、様々なストレスによる肝の脂肪化、傷害、肝炎、肝線維化への進行の分子機構を研究しています。同時に、病態の進行抑制するために、機能性食品・治療薬の探索研究を行っています。さらに、光イメージング技術応用し、ユニークな病態解析、機能性食品・薬剤のin vitroスクリーニング系の構築を試みています。
    細胞・生体に対する様々なストレスは、肝臓以外の臓器の様々な病態にも影響していることが示されており、それらの予防法・治療法の開発への応用も期待されます。

  • 粘着性ゲルの口腔内装置への応用

    粘着性ゲルにより口腔内装置の維持のイノベーション

    歯科で用いられる口腔内装置はクラスプなどの維持装置で歯に維持を求めている。本研究ではポリカーボネートフレームの皮膚や粘膜面側にPCDMEゲルなどの粘着性ゲルを接着させた口腔内床装置(口蓋閉鎖床など)を試作し、開発に取り組んでいる。

    • PCDMEゲルを接着したポリカーボネート板

    • 指に粘着したPCDMEゲルを接着したポリカーボネート板

    • シリコンの歯列模型に装着した口蓋閉鎖床

    • PCDMEゲルを接着したポリカーボネートの口蓋閉鎖床の口蓋粘膜面

    研究の内容

    本研究による口腔内装置を口蓋閉鎖床として用いる場合、粘着性を有するゲル組成物を口腔内粘膜に接触させて固定させることができるため、従来の口蓋閉鎖床(図1)とは異なり、クラスプを必要としない。このため、クラスプに起因する歯肉炎の発生を低減することができ、歯列の側方成長の妨げを回避でき、締め付け感、圧迫感等無しに快適に装着することができ、口蓋閉鎖床を着脱する際には口腔内を傷付けず安全に行うことができる。また、歯の未萌出時期にも装着でき、早期より言語トレーニングを行うことができる。さらに、薄いフレーム上に薄くゲル組成物を形成させることができ、均一な厚さとすることができる。このため、装着時の違和感が軽減されるとともに、口腔空間を広く確保することができ、舌の可動領域が広がることで言語トレーニングに有効である。
       

  • リウマチAI診断研究

    単純写真による関節裂隙狭小化判定

    関節リウマチ患者における関節破壊性変化の客観的かつ詳細な定量的解析情報を提供するコンサルティングシステムの開発を試みる。画像解析は、独自に開発したプログラムを用いて、X線画像の経年変化から計測し、国内外の研究・臨床機関に対し情報提供する。

    • 中指指節間関節の単純X線写真(図1,2)
      関節遠位側の輪郭は帯状高吸収域として描出され、熟練者はその帯状高吸収域の内部に輪郭を設定する(true margin)ため、この職人芸とも言うべき熟練者の輪郭描画はコンピューターによる再現が困難となる(図1は文献から引用)。
      図2は我々のオリジナルの手法で、自作ソフトウエア上で治療前後の2画像の基節骨(上側の骨)側の輪郭を合わせることで中手骨頭(下側の骨)の位置ずれに基づき関節裂隙変化を検出・計測している

    研究の内容

    我々はこれまで、単純X線写真上の関節裂隙狭小化進行を客観的に計測するソフトウエアの開発・バリデーションを進めてきた。最新のソフトウエアでは、独自の経時差分技術と輪郭抽出技術とを用いて、対象となる手足の関節の関節裂隙の変化を面積(平方ミリメートル)で表示することが可能となった。
    一方で、世界的な視野に立っても、ソフトウエアで単純X線写真上の関節裂隙狭小化進行を自動的に検出することは困難であり、マニュアル操作に依存する工程が残されており、各病院・診療所レベルでの計測には無理がある。そこで、本研究の目的はインターネットを介して臨床試験・臨床研究を主導する国内外のクライアントのニーズに対応可能な、関節リウマチ破壊性変化定量解析のコンサルティングシステムを構築することである。

  • 紅藻フィコビリタンパク質のヘルスベネフィット

    紅藻ダルスに豊富に含有されるフィコエリスリンの
    健康機能とそのメカニズムの解明

    北海道沿岸に分布する未利用紅藻『ダルス』が赤色のタンパク質「フィコエリスリン(PE)」を豊富に含有し、それが種々の健康機能を発揮する可能性を見出しました。現在、本PEの構造解析とそれに基づく健康機能のメカニズム解明を行っています。

    研究の内容

    ダルス(Palmaria palmata)は主に北海道に分布する紅藻で、冬期にコンブの養殖ロープに繁茂して生育を妨げるために除去される未利用の海藻です。近年私達は、ダルスが乾燥重量当たり約40%もタンパク質を含有し(大豆と同等)、その主要成分が光合成補助色素である赤色のフィコエリスリン(PE)であることを見出しました。さらに、本PEおよびPEから調製したペプチドがACE阻害・抗酸化・脳機能改善作用などの健康機能を示すことを明らかにしました(Marine Drugs, 14:1-10 (2016), Journal of Food Biochemistry, 41: e12301 (2017))。

  • ソノポレーション:超音波と微小気泡を用いた新しい薬物送達手法の開発

    細胞レベルでの組織標的能を実現

    我々は,直径数ミクロンの微小気泡を細胞に付着させた状態でパルス超音波を照射することにより細胞膜の膜透過性を一時的に向上できることを世界に先駆けて明らかにし、生体への薬物・遺伝子送達の実現を目指した研究を推進している.

    • 超音波照射前                   照射後
          図1

    • 図2

    研究の内容

    ○微小気泡とパルス超音波を用いた音響穿孔法(ソノポレーション): 微小気泡が細胞膜に接触した状態でパルス超音波を照射すると、付着部位にのみ一時的穿孔を生じる(図1)。微小気泡に薬剤や遺伝子を付加し、光ピンセットで付着位置を制御することにより、目的とする細胞の任意の位置に薬剤や遺伝子を導入する手法を実現。
    ○治療部位の特定と薬物送達を微小気泡と超音波診断装置で実現: 治療対象の細胞にのみ付着する標的機能を有する気泡を静脈から注射する。気泡が集積した組織を超音波造影法により検出することで治療対象部位を特定する。続いて気泡を壊すパルス超音波を発生し、細胞に一時的な細胞膜穿孔を生じさせ、薬物等の送達を実現する(図2)。気泡に薬剤や遺伝子などを付加することで、ターゲット細胞にのみ高効率な薬物送達が実現できる。

  • 柔軟かつ強靱なゲル

    福祉時代の新素材

    人間生活の質の向上が求められる時代において、材料はどうあるべきか。その回答がダブルネットワークゲルをはじめとする強靭なゲルである。強靭ゲルは医療機器・生体組織代替物・生体模倣物の“質”を大きく変革する。

    • 高強靭ダブルネットワークゲル

    • 歪応答性構造色ゲル
      ガラスを用い部分的に圧縮している

    研究の内容

    従来、軟材料といえばエラストマーが広く用いられてきているが、生体との接点あるいは代替として利用する場面では含水性が決定的に重要な要素となる。含水材料は水の物性を強く反映するため、熱の伝わり方が生き物らしい・電磁波の吸収特性が生体に近い・表面の摩擦が非常に低いなど、生体組織にとてもよく似た物性を示す。含水性軟材料といえばゲルであるが、従来のゲルは機械的強度が低く応用が制限されていた。我々は含水率が90%でありながらトラックが乗っても壊れない高強靭性ダブルネットワーク(DN)ゲルの開発に成功し、ゲルの応用の可能性を大きく広げた。また、DNゲルの強靭性を解明していく中で、「犠牲結合原理」を見出し、様々な材料を強靭化するコンセプトに到達することができた。近年DNゲル以外の様々なタイプの強靭ゲルを開発している。

  • 動物の難治性疾病に対する新規制御法の開発

    家畜・伴侶動物の慢性感染症や腫瘍に対する
    抗体医薬・タンパク質製剤による免疫療法の開発

    難治性疾病では、生体内で病原体や腫瘍の排除機序が妨げられています。これは種々の免疫抑制因子が、免疫細胞を疲弊化させるためだと考えられています。本研究は免疫回避機構を標的とした製剤を開発し、動物の疾病の新規治療法として応用するものです。

    研究の内容

     研究目的: PD-1をはじめとする免疫抑制因子を標的とする動物用抗体医薬やタンパク質製剤の作製と治療法への応用。従来技術との比較・優位性:本アプローチは特定の疾病を対象とするものではなく、免疫抑制機序によって抗病原体・抗腫瘍効果が失われている疾患を広く対象とします。リンパ球を標的とした免疫療法ですので多機能的な免疫増強効果が期待されます。研究の独自性:獣医畜産領域において本アプローチに関する論文や臨床応用例の報告は未だありません。特徴:各抗体を樹立し、キメラ抗体として改変することで大量生成を行います。効果:有効なワクチンや治療法がない家畜(ウシ・ブタなど)や伴侶動物(イヌ・ネコなど)の疾病に対する新規治療法の提供を目指します。