北海道大学 研究シーズ集

English

ライフサイエンス:48件

1頁の掲載件数 20 50 改頁しない 分野別アイコン凡例
  • ライフサイエンス
  • 情報通信
  • ナノテク・材料
  • ものづくり技術
  • 人文・社会科学
  • エネルギー
  • 環境
  • 観光・まちづくり
  • 北極域
  • 社会基盤
  • 共用機器
  • 腫瘍血管新生阻害剤スクリーニングシステム

    腫瘍血管新生阻害剤開発のためのcell based screening assay システム

    腫瘍血管内皮細胞を用いたcell-based screeningを実現する。現存の血管新生阻害剤における問題点 (副作用・コンパニオン診断薬がない)を克服し、次世代血管新生阻害療法開発につなげる。

    研究の内容

    分子標的治療薬の開発が進み、血管新生阻害剤が広く使用されるようになったが、治療効果を予測するコンパニオン診断薬が無いこと、正常血管への傷害による副作用といった問題もある。
    我々はヒト腫瘍血管内皮細胞の分離培養に成功しており、それらが発現する特異マーカーを同定している。これらマーカーを発現している腫瘍血管内皮細胞は新規薬剤や化合物のcell-based screeningに有用な貴重なマテリアルである。従来の腫瘍細胞株や臨床腫瘍組織片を用いた研究では発見されない新しい治療の標的や、薬剤を同定することを可能とする。 さらにコンパニオン診断薬としてこれらの腫瘍血管内皮細胞が発現するマーカーを利用する事が可能となる。血管新生阻害剤の投与時期、期間、適応症例などを選別したうえでの個別化治療実現つなぐことを可能とする。

  • ペプチド・糖ペプチド環化技術

    水素結合制御によりペプチド環化効率を飛躍的に向上

    溶媒の水素結合ネットワーク形成に着目した反応系を活用することによりペプチド環化反応の効率化と難溶性ペプチドの溶解度向上を高次元で両立することに成功した。創薬や分子ツール設計に応用可能である。

    • 環状糖ペプチドの合成例、C2対称型に糖鎖を配向制御した(左)
      D-アミノ酸導入等により配座の自由度が制御可能である(右)

    研究の内容

    創薬等の生理活性化合物探索やライフサイエンスにおける分子ツール設計ににおいて環状ペプチドは、その配座安定性や配向性、対称性の制御などが容易であるため、理想的な基本分子となりうる。しかし、ペプチド環化は希薄条件や複雑な保護基戦略などを要していた。本研究では水素結合制御型溶媒システムと無塩基縮合剤システムを組み合わせることにより、難溶性のペプチド等でも高濃度条件下で効率的に環化できることを見出した。特殊な保護基戦略を必要としないことから応用範囲が広く、これまで様々な生理活性ペプチドや糖ペプチドの効率的環化に成功している。本技術を活用することにより、環状ペプチドの設計自由度と量産が容易となり、創薬やライフサイエンス用ツール開発が加速されることが期待される。

    比能 洋 教授 次世代物質生命科学研究センター 副センター長 Hiroshi Hinou
    博士(工学)
  • 消化管での栄養素認識機構の解明

    食品ペプチドによる消化管内分泌系への作用を介した血糖制御

    化管で栄養素を感知する内分泌細胞から分泌されるホルモンは、食後即座に様々な生理応答を調節します。このメカニズムを研究する中で、食品ペプチドが消化管ホルモンGLP-1の分泌を促進し、血糖上昇を抑制できることを動物試験で明らかにしました。

    研究の内容

    消化管で栄養素を認識する消化管内分泌細胞より放出される各種消化管ホルモンは、食後の様々な生理応答を調節する重要な役割を有します。私たちは、抗糖尿病ホルモンとして知られる消化管ホルモンGLP-1に着目し、これの分泌を強く促進する食品ペプチド(トウモロコシ由来)を見いだしました。このペプチドをラットに経口投与することで、GLP-1分泌が促進され血糖上昇が抑制されることを明らかにしました。私たちの研究では、このペプチドがどのように消化管内分泌細胞に認識されるかを解明すること、様々な食品成分により消化管ホルモンの分泌をコントロールして、食後血糖や食欲を制御することを目指しています。

  • 魚類の卵形成のしくみを理解し、応用研究に活かす

    養殖技術の向上、生態・環境調査技術の開発

    魚類の仔稚魚の成長は、主に卵内に蓄積された物質に依存します。従って卵構成成分の合成や蓄積は卵質を左右する重要な過程です。私たちは、この過程の詳細や制御機構(卵形成のしくみ)を研究しています。また、このしくみを利用した応用研究を行っています。

    研究の内容

    魚類の卵は、タンパク質を中心に、脂質、糖、ビタミン類、ホルモン類などの様々な物質を「卵黄」として細胞内に蓄えながら急速に成長します。これらの卵黄物質は、仔稚魚の質に影響する大切な栄養源です。また、卵の成長は様々な生体内分子、例えば遺伝子・タンパク質・ホルモン等が密接に働き合うことで進行し、その様式は魚の種類により様々です。さらに、光や水温等の環境要因はこれら体内因子のプロファイルに影響を与え、卵成長を制御します。私たちは、多種多様な魚の卵が構築される過程を、免疫生化学・分子生物学・細胞生物学などの生命科学の手法を用いて詳細に比較解析しています。一方、これらの基礎研究を基に、「環境ホルモン汚染のモニタリング」、「魚卵の種判別法の開発」、「魚の簡易雌雄判別法の開発」などの応用的研究も行っています。

  • 超偏極13C MRI遺伝子変異イメージング

    代謝MRIにより腫瘍内の遺伝子変異を非侵襲的に可視化

    癌治療の成果は、癌細胞の持つ遺伝子変異の種類に大きく左右される。遺伝子変異がもたらす特徴的な代謝変化を指標に、最新の代謝MRIを用いて非侵襲的に変異遺伝子を特定する分子イメージング技術を開発している。

    • 図1 超偏極13C MRIによる遺伝子変異イメージングの概念 標的とする変異遺伝子産物による特徴的な代謝物の生成や、本来起こるべき代謝反応の欠損・低下により、変異遺伝子を特定する。

    研究の内容

    ・超偏極13C核磁気共鳴画像(MRI)は13C標識した任意の化合物のMRI信号を一時的に数万倍に増幅することで、その生体内における代謝反応をリアルタイムに可視化するMRIの最先端技術である。PET/CTのような放射線被曝を伴わず、光学イメージングでは困難な体深部からの信号の取得が可能な“夢の分子イメージング技術”として期待されている。
    ・細胞は遺伝子変異の蓄積により癌化し、変異の種類は癌治療への応答性を大きく左右する。癌化をもたらす遺伝子変異には特徴的な代謝変化を伴うものが多く、︎超偏極13C MRIにより特定の代謝変化を見ることで、非侵襲的に腫瘍内の変異遺伝子を推定することが可能となる。

  • 非翻訳領域配列の導入によるタンパク質翻訳効率改変

    ウイルスを模倣することによって、組み換えタンパク質の
    発現効率を3ケタ増減させる

    細胞1個当たりのタンパク質発現効率を現在の100倍に上げることにより、CHO細胞などを用いた組み換えタンパク質作製効率飛躍的に上昇させ、遺伝子工学技術にパラダイムシフトをもたらすことを目的としています。

    研究の内容

    ヒトアデノウイルスは古くから遺伝子導入に利用され、安全性が確認されたウイルスベクター系の代表例ですが、野生型アデノウイルスは感染時に宿主のタンパク質発現をシャットダウンし、自己の後期タンパク質を優先的かつ爆発的に発現するというすぐれた性質についてはあまり注目を集めていません。しかし、アデノウイルス自体には病原性があり組み換えタンパク質精製系にウイルス粒子を使用するのは安全性の面で大きな問題が残ります。そこで、ウイルス遺伝子中のリーダー配列を最適化し組み換えタンパク質の上流に非翻訳領域配列として組み込むことにより、ウイルスの翻訳系を模倣して、既存の発現ベクターからの翻訳効率を100倍以上にすることを目指しています。逆に終止コドン下流非翻訳領域を改変し発現量を数十分の一にすることも可能です。

  • ミトコンドリア標的型ナノカプセル (MITO-Porter)

    ミトコンドリアに薬物・タンパク質・核酸を導入する技術

    ミトコンドリアは疾患治療、美容・健康維持、ライフサイエンスの発展に貢献するオルガネラとして注目されています。私たちはミトコンドリア標的型ナノカプセル(MITO-Porter)の開発に成功しており、本ナノカプセルの実用化を目指しています。

    研究の内容

    本研究のミトコンドリア標的型ナノカプセル(MITO-Porter)は、細胞膜およびミトコンドリア膜を通過し目的分子をミトコンドリア内部に届ける事が可能です。機能素子を用いた従来技術では送達分子の大きさや種類を著しく制限しましたが、目的分子を封入するMITO-Porterを用いた戦略では分子種によらないミトコンドリア送達を実現します。
    GFP(緑色)を内封したMITO-Porterを調製し、細胞内を蛍光顕微鏡観察したところ、ミトコンドリア(赤色)と重なり合った黄色のシグナルが多数観察される、ミトコンドリアへの効率的な分子送達を確認できました。また、既存の核酸導入試薬(核・細胞質を標的)では不可能であったミトコンドリアへの遺伝子・核酸導入にも成功しています。さらに、生体に適応可能なナノカプセルの開発も行っています。

  • 根で植物をコントロールする

    根の再生を制御する方法

    多くの植物にとって根は必要不可欠な器官であり、根の傷害は速やかに回復します。これは根と地上部のバイオマス比も一定値を保つ仕組みが働くためです。本研究室では根の再生メカニズムを明らかにし、バイオマス比をコントロールできる技術の可能性を示した。

    • 図1 無処理のシロイヌナズナと生育途中で主根を切ったシロイヌナズナの様子(左図)、及び根切り後4日目の根系の総延長の比較(右図)。主根を切除しても4日で同レベルまで根が再生する。(左図は処理後4日目の写真。赤矢印は主根を切った位置)。

    • 図2 本研究で明らかになったメカニズム。根切りをすることでYUCCA9遺伝子が活性化、オーキシンの合成等を経て、側根が作られたり発達したりする。このメカニズムを人為的に制御することで、植物の生育を調節できる可能性がある。一方、根切りがどのようなシグナルを引き起こしてYUCCA9を活性化させているかはまだ同定できておらず、今後の研究が待たれる。

    研究の内容

    盆栽などの園芸や果樹栽培では広く根の剪定(根切り)が行われ、経験的に根をコントロールすることで地上部をコントロールしてきました。これは根と地上部のバイオマス比が一定値を保つことを経験的に利用した手法です。私たちが発見したYUCCA9は根切りにおける根の再生に必要な植物ホルモン、オーキシンを合成する遺伝子でした。研究の過程で薬理学的に根の再生を阻害する薬剤の組み合わせや、遺伝的な形質によって根の再生が起こりずらい植物も作出することができました。
    根の再生は陸上植物で広く見られる現象であり、栽培品種についても本研究を応用することで地上部のバイオマスを増加、減少させることが可能になり、農業作物、園芸品種において高収率、労働集約、コストコントロール、高付加価値が期待できると思われます。

    綿引 雅昭 准教授 Masaaki Watahiki
    博士(地球環境科学)