北海道大学 研究シーズ集

English

ま行の研究者:14件

1頁の掲載件数 20 50 改頁しない 分野別アイコン凡例
  • ライフサイエンス
  • 情報通信
  • ナノテク・材料
  • ものづくり技術
  • 人文・社会科学
  • エネルギー
  • 環境
  • 観光・まちづくり
  • 北極域
  • 社会基盤
  • 共用機器
  • 時間分解二次元表面音響波イメージング

    固定周期の光パルス列による任意周波数応答の励起・検出

    GHz周波数領域までの表面音響波の伝播の様子を時間分解二次元イメージとして可視化する技術です。従来の方法では周波数分解能が低いという問題がありましたが、本方法では任意周波数の音響波を励起・検出することができます。

    • フォノニック結晶中に設けられた導波路を伝播する322 MHz音響波の伝播イメージ。

    • 直径37.5 μmの銅円板構造の縁を周回する振動モード。励起周波数を自由に選ぶことにより狙った次数のモードを励起できる。

    • Au/クラウンガラス試料の表面波の分散関係の測定例。周波数分解能は従来法に比べて約4倍に改善。

    研究の内容

    音響波を用いた物性評価や機能性デバイスの設計・製作・評価において、音響波伝播の可視化は極めて有益です。このために、サブピコ秒時間幅の超短光パルス(ポンプ光)を試料に照射して表面音響波を励起し、その伝播の様子を遅延された光パルス(プローブ光)で観測します。遅延時間およびプローブ光の照射位置を走査することで音響波の時間分解二次元イメージを得ます。時間分解能はピコ秒、空間分解能は1μm、周波数帯域はGHz程度です。この方法では周期的な光パルス列を用いるために、従来はその繰り返しの整数倍周波数の音響波のみ励起・検出可能でしたが、開発した技術により、任意周波数の音響波の励起・検出が可能になりました。さらにこれを発展させて光パルスの繰り返し周波数とは全く非同期な振動のイメージングも可能となり、応用範囲が一層広くなりました。

  • 超偏極13C MRI遺伝子変異イメージング

    代謝MRIにより腫瘍内の遺伝子変異を非侵襲的に可視化

    癌治療の成果は、癌細胞の持つ遺伝子変異の種類に大きく左右される。遺伝子変異がもたらす特徴的な代謝変化を指標に、最新の代謝MRIを用いて非侵襲的に変異遺伝子を特定する分子イメージング技術を開発している。

    • 図1 超偏極13C MRIによる遺伝子変異イメージングの概念 標的とする変異遺伝子産物による特徴的な代謝物の生成や、本来起こるべき代謝反応の欠損・低下により、変異遺伝子を特定する。

    研究の内容

    ・超偏極13C核磁気共鳴画像(MRI)は13C標識した任意の化合物のMRI信号を一時的に数万倍に増幅することで、その生体内における代謝反応をリアルタイムに可視化するMRIの最先端技術である。PET/CTのような放射線被曝を伴わず、光学イメージングでは困難な体深部からの信号の取得が可能な“夢の分子イメージング技術”として期待されている。
    ・細胞は遺伝子変異の蓄積により癌化し、変異の種類は癌治療への応答性を大きく左右する。癌化をもたらす遺伝子変異には特徴的な代謝変化を伴うものが多く、︎超偏極13C MRIにより特定の代謝変化を見ることで、非侵襲的に腫瘍内の変異遺伝子を推定することが可能となる。

  • ナトリウムアミドを用いた低温窒化法

    アンモニアガスボンベを使用しない窒化物・酸窒化物合成

    ナトリウムアミド融液を用いることで、高濃度・高活性な窒素源との反応を引き起こし、酸化物などを低温(300℃以下)で窒化物・酸窒化物に変換する手法。毒ガスであるアンモニアガスボンベを準備することなく窒化物・酸窒化物を合成可能です。

    研究の内容

    300℃以下の低温で酸化物を窒化する新規手法です。従来の窒化手法では、毒ガスであるアンモニアガスボンベやアンモニアガスの回収設備の設置等が必要であり、またアンモニアガスの使用率も低いためアンモニアを大量に使用します。本手法では、ナトリウムアミドをフラックスとして用いることで、毒性のあるアンモニアの使用量を最小限に抑えられ、低温で酸窒化物及び窒化物のナノ結晶が得られます。また、ナトリウムアミドは固体窒素源であり、アンモニア液体ボンベの設置が不要です。また、塩化物とナトリウムアミドを混合することで、瞬間的な昇温反応によって酸窒化物を合成する手法を発見しています。

  • 顕微インデンテーション

    微少領域の硬さ/変形の「見える」化

    押し込み硬さ試験中の圧痕形状変化および周辺の表面変化を「その場(In-situ)」観察できます。動画撮影による高い時間分解能の情報と硬さ試験を組み合わせた高度データの“ハイスループット”収集によって、材料開発や事故原因解明に貢献できます。

    • 図 NiTi超弾性合金における負荷-除荷観察結果

    研究の内容

    硬さ試験は局所的な負荷によって生じた変形から物質・材料の強度を明らかにする手法であり、高い簡便性・再現性から広く用いられています。この手法の簡便性を生かしつつ高度な応力応答情報の取得を目指して、硬さ試験のIn-situ試験化(顕微インデンテーション)を行いました。
    押し込み試験中に透明圧子を通して圧痕内部並びに周辺の試料表面を観察するには光学的条件の最適化が必要ですが、透明圧子の屈折率に近い屈折率を有する液体を圧子周辺に導入することで広範囲の表面観察を可能としました。

  • 1枚の顕微鏡画像でも、全てを語れる

    日本全国の研究者へ、最新の生物顕微鏡を提供する施設

    日本全国の研究者が最新の生物顕微鏡を利用できる施設としてニコンイメージングセンターは設立され、現在は電子科学研究所の運営で活動しております。顕微鏡に触れたことのないような初心者の方にも、専任スタッフが機器やソフトウエアの操作方法を説明します

    • 超解像顕微鏡

    • 培養細胞の超解像画像

    研究の内容

    近年になってバイオイメージングの需要はますます増大しており、遺伝子導入技術や蛍光タンパク質による分子・細胞マーキング技術、そして顕微鏡などの観察機器の性能も、飛躍的に向上しております。しかし高性能の顕微鏡システムは非常に高額で、特にスタートアップ時にすべてを揃えるのは困難なうえ、誰でも簡単に優れたデータを取得できる訳ではないところに、イメージングの難しさがございます。
    当センターは学外の研究者にも広く機器を開放し、機器やソフトウエアの操作指導のみならず、イメージングのノウハウも提供します。また本年より「先端バイオイメージング支援プラットフォーム」にも参画し、国内の他の顕微鏡施設とも連携して、最先端の顕微鏡の利用の支援にも携わっております。イメージングを検討中の企業の方々におきましては、まずはぜひご検討ください。

  • 局在プラズモンを用いた人工光合成システム

    光ナノアンテナを用いた可視・近赤外光による水からの
    水素・アンモニアの光合成システム

    高効率な人工光合成を実現するために、金属ナノ構造による光ナノアンテナを用いて可視〜近赤外に至る幅広い波長の太陽光エネルギー変換を可能にし、水の光分解に基づく水素発生、さらに最近エネルギーキャリアとして注目されるアンモニアの光合成に成功した。

    • 図は左から、光アンテナ構造の共鳴スペクトルと光電変換効率のアクションスペクトル、光アンテナ構造を用いて光を水分解する人工光合成システム、および水素・酸素発生量の光照射時間依存性

    研究の内容

    高効率な人工光合成を実現するためには、従来の人工光合成では未利用の可視〜近赤外波長域の太陽光エネルギーを活用し、化学物質に変換するシステムの構築が不可避である。我々は金属ナノ構造の形状や配置を変化させることにより様々な波長の光を効果的に捕集できる光ナノアンテナの設計・作製に成功するとともに、酸化物半導体基板に光ナノアンテナを搭載し、可視〜近赤外に至る幅広い波長域の太陽光により水を光分解して水素と酸素を化学量論的に発生させることに成功した。また、同様の系を用いて空気中の窒素を光還元してアンモニアの光合成にも成功した。アンモニアは次世代のエネルギーキャリアとしても注目を浴びているが、合成には高温・高圧条件が必要であり環境に対する負荷も大きい。本系は太陽光を利用した常温・常圧のアンモニア合成法としても期待される。

  • ナノテクノロジープラットフォーム

    微細加工・微細構造解析

    北海道大学が所有する最先端設備とその活用ノウハウを提供し、微細加工・微細構造解に関する研究開発を支援します。また、全国の実施機関と緊密に連携し、全国的な設備共用体制の下に産業界や研究現場の課題解決へのアプローチを提供します。

    • 原子分解能を持つ収差補正
      走査型透過電子顕微鏡(JEM-ARM200F)

    • 原子層堆積装置により作製されるナノ多層薄膜
      (TiO2(緑)、Al2O3(赤)、SiO2(紫)の5層(各10nm厚)積層構造)

    研究の内容

    微細加工はクリーンルームに設置した最先端の電子線描画装置によるパターン形成、多元スパッタ装置・原子層堆積層などによる成膜加工、反応性イオンエッチング装置によるエッチング加工、FE-SEMによるデバイス評価など、多様な装置群を用いることで薄膜形成から金属ナノ構造作製などマイクロメートルからナノメートルスケールのデバイス作製を支援します。
    微細構造解析では収差補正透過電子顕微鏡(S/TEM)、複合ビーム顕微鏡(FIB-SEM)を用いた内部構造観察、走査電子顕微鏡(FE-SEM)、オージェ電子分光装置(AES)、電子線プローブマイクロアナライザ(EPMA)による表面・状態分析、超高圧電子顕微鏡や時間分解光電子顕微鏡、スピンSEMといった特殊ビーム・特殊環境下での測定により材料の分析に関する支援を行います。

  • 聞き取り調査によるまちづくり・環境保全

    多様性を生かした合意形成へ

    ソロモン諸島、宮城、北海道でのフィールドワークから、自然と地域社会との関係について研究しています。環境保全やまちづくりをボトムアップで進めていくための研究や実践を行っています。東日本大震災後は宮城県石巻市で復興支援を兼ねた研究を行っています

    研究の内容

    「聞く」ことを政策や活動に生かす研究を行っています。地域の人たちと研究者・学生が協働で地域の人びと、自然、歴史、文化、社会問題について調べ、課題を抽出する、解決策を考える、あるいは、これからの地域像を考える。そのためのツールとしての聞き取り調査や聞き書きという手法の実践・応用を行っています。従来の量的調査(統計やアンケート調査)やワークショップなどでは見えてこなかったものを可視化し、また信頼関係を構築するものとしての質的調査(聞き取り、聞き書き)の可能性を研究しています。

    宮内 泰介 教授 Taisuke Miyauchi
    博士(社会学)
  • 耐水性が高く透明な酸化グラフェン/抗菌・抗ウイルスコーティング

    ナノカーボン材料の酸化グラフェンと,抗菌・抗ウイルス剤を複合化した,新しいコーティング法を開発しました。耐水性が高く,透明で基材の色に影響を与えないことから,水周り衛生に向けた新しいアプローチとして期待できます。

    • 酸化グラフェン抗菌・抗ウイルスコーティングの方法

    • 酸化グラフェン(GO)と抗菌・抗ウイルス剤(界面活性剤:CSAA)複合膜の耐水性と抗菌特性のメカニズム

    研究の内容

    微生物は水の存在する湿潤環境を好むことから,手洗い設備等の抗菌・抗ウイルス性が強く求められています。しかし,これまで水周り環境に,簡便かつ長期的に安定して抗菌・抗ウイルス効果を得ることは出来ませんでした。酸化グラフェンは,厚さ約1nmのシート構造を持つナノカーボン材料で,多数の酸素官能基を有することから様々な分子やポリマーと強く相互作用します。この性質を利用して,基材の表面に酸化グラフェン超薄膜を強固に付着させ,さらに抗菌・抗ウイルス剤を結合させる新しいコーティング技術を開発しました。酸化グラフェン膜は透明で基材の色味を損なうことも無く,基材との結合も強いことから水で洗っても脱落しません。また水中で1か月間保管した場合でも,酸化グラフェン膜は剥離脱落することなく基材の表面に残存していることを確認しました。

    宮治 裕史 教授 Hirofumi Miyaji
    博士(歯学)
  • アカデミックインタークラウド

    学術クラウド連携による研究開発を推進

    全国規模でクラウドシステムを連携させたアカデミックインタークラウドの実現に向けた研究を推進し、インタークラウド環境での資源割当最適化やスパコンとインタークラウドの連携等、クラウド関連技術の共同研究を実施。

    • 図1 分散クラウドシステムの実現

    • 図2 スパコンとインタークラウドの連携による多目的設計最適化

    研究の内容

    北海道大学情報基盤センターでは、国内最大規模の学術クラウド「北海道大学アカデミッククラウド」を構築し、全国の研究者に対して仮想・物理マシンおよびそれらのクラスタシステムとしての提供、高速大容量クラウドストレージ、機械学習・ビッグデータ処理システム等の研究開発向けクラウドサービスを提供している。さらに、全国規模でのクラウドシステム連携を実現するための基盤技術や、研究者を支援するためのシステム構築について研究を推進している。その具体例として、認証連携などのクラウド連携基盤技術の開発および試験システムの構築(図1)インタークラウド環境下での資源割当最適化、スパコンとインタークラウド基盤を連携させた全国規模での大規模な設計最適化フレームワークの実現(図2)等があげられ、全国の大学、研究所、企業との共同研究を行っている。

    棟朝 雅晴 教授 Masaharu Munetomo
    博士(工学)
  • ストレスによる病気の治療薬とバイオマーカーの開発

    「病は気から」の分子機構に迫る分子心理免疫学

    過労、不眠による突然死など社会的に広く問題となっている慢性的なストレスが、特定の神経回路の活性化を介して臓器障害と突然死をマウスに誘導する分子機構を明らかにしました。この系を利用して、ストレスに起因する病気の治療標的を探索できます。

    • 慢性ストレス負荷により室傍核(PVN)での交感神経が活性化(①)し,第3脳室,視床,海馬の境界部にある特定血管においてケモカインというタンパク質が産生され,血液内に存在する中枢神経系抗原を認識する自己反応性免疫細胞が血液脳関門を超えてこの特定血管周囲に集まり、微小炎症が誘導される。これが契機となり、新たな神経回路(②から⑤)が活性化し、胃・十二指腸を含む上部消化管での炎症が誘導されることで、心臓の機能不全により突然死が起こる。今回の研究による新たなブレークスルーは、「脳の特定血管での微小炎症が、新たな神経回路の活性化を誘導することで末梢臓器の機能障害が誘導されること」が明らかとなった点であり、ストレスゲートウェイ反射と呼んでいる。すでに様々な薬剤がこの実験系でテストされていて、消化管出血と突然死を防止する薬剤とその作用部位の例を示す。
      ストレスにて脳内特定血管で発現上昇する遺伝子群をすでに同定しており、その中で6つの遺伝子(C2CD4D、VSTM2L、VSTM2A、TMEM5、LY6G6C、ADRA2C)は、抗体を使った抑制によってストレス後の突然死が抑制された。

    研究の内容

    私たちは、ストレスと病気の関連を研究しています。最近、慢性ストレスを加えたマウスに中枢神経抗原に対する自己反応性T細胞を移入すると、マウスが突然死しました。死因は、ヒトと同様に胃・十二指腸の出血による心不全が原因でした。ストレス特異的な神経回路活性化にて脳内の特定血管に移入T細胞などが集まり微小炎症が誘導され、これを起点に活性化する新たな神経回路がこの胃腸障害・心不全を引き起こしました。これまで、分子機構が解明されているストレスの動物モデルは無く、本モデルは、ストレスに起因する病気の新たな薬剤のスクリーニングに有用です。さらに、この系を用いて、ストレス時に脳内特定血管で発現上昇する分子群を同定し、それら分子に対する抗体が突然死を抑制しました。また、現在、ヒトでも自己反応性T細胞のマーカー候補を同定しています。

    村上 正晃 教授 Masaaki Murakami
    医学博士
  • ガバナンスの理論と実践を踏まえた
    行政システムの設計・構築

    官民協働による安全・安心な地域・社会づくり

    安全・環境規制や科学技術政策、地方創生などの事例研究を踏まえ、様々な「技術」の社会導入・普及に係る政策問題の解決に資する行政システムを利害関係者の「協働」により構築していく手法について、ガバナンスの理論と実践の観点から研究しています。

    • 2016年5月刊行の私の規制研究の成果です(ISBN: 9784000611213)。規制基準の国際調和化、技術情報の分散化、官民関係の多元化が進む中、規制行政機関はどのようにして自らの裁量を確保しようとしているか。国内外に広がる「規制空間」の構造は、それによりどのように変容しているか。木造建築、軽自動車、電気用品の安全に関する技術基準の設定、規制の実施過程を素材に分析しました。

    • 2016年4月刊行のこの論文集(ISBN: 9784832968257)には、2001年の中央省庁等改革における科学技術の省庁再編の研究成果が掲載されました。旧科学技術庁は、その一部が内閣府に引き継がれ、一部が旧文部省と統合されて文部科学省となりましたが、科学技術・イノベーション政策の「司令塔機能強化」が実現するかどうかは、今後の運用次第です。

    • 2018年7月刊行の地方創生に関する共同研究の成果です(ISBN: 9784000238953)。私はまず、北海道と四国の政策担当者への聞き取り調査の結果から、地方創生に地方分権と中央集権の両側面があったことを論じました。その上で、戦後日本の国土政策(東京一極集中の是正)と内閣主導の地方創生の推進体制などを比較することにより、今後の地方創生のあり方を検討しました。

    研究の内容

    「技術」は、地域・社会に大きな便益をもたらす反面、様々なリスクを孕んでもいます。したがって、そうした「技術」を社会に導入し普及させていく際には、そのリスクを軽減する行政システムを設計して、その社会的便益を最大化できる公共政策のあり方を考えていく必要があります。
    そうした公共政策について抱くイメージは、例えば自動車の事例でもメーカー、規制当局、そして我々ユーザーといった利害関係者で異なっていることが多く、また、規制は国際基準によって規定されていたりもします。
    そうした中で、「技術」の社会導入・普及の政策問題を丁寧に抽出してその全体像を俯瞰し、利害関係者が折り合える点を模索し、合意形成を図っていくとともに、官・民が手を携えて行政システムを構築し運営していく手法を考えます。

  • 人口3割減時代における公共施設の再編

    「まちの整体」と生活圏のグランドデザイン

    北海道では近い将来消滅すると予想される集落は百数十にのぼるといわれる。「まちの整体」は、地方で未利用・低利用なまま抱えられている公共建築群の再編を軸にしながら、人口3割減時代を見据え、地方都市の広義の適正規模化を図るものである。

    • 上士幌町セントラルベルト構想

    研究の内容

    北海道河東郡の上士幌町は、他の北海道の自治体と同じく急速な人口減少に直面している。1965年には10,309人であったのが、2010年にはその約半分にまで減った。2040年には3,222人へと減少すると推計されている。そのような中、平成24年度に「5,000人のまちづくり」を目指す10のテーマを定め、その第1番目として「公共施設の配置等グランドデザイン作成」を掲げた。
    公共施設の再編については、都市部の自治体では一般に、施設数のコントロールによって財政的な圧迫を改善することが目指される。上士幌町の課題と目的はそれが第一義ではない。人口が1万を割るような小さなまちでどのような豊かな暮らしが実現できるのか、そのために公共施設が果たす役割は何かからはじまる再編の意義を探求している。

  • 成長のツボを押す新しい植物生育促進技術

    排水を活用する次世代バイオマス生産と植物工場への共生細菌の利用可能性

    北海道大学植物園のウキクサ亜科植物から全く新しい成長促進細菌P23を発見した。P23は植物の表面スイッチを押すことでその生育を促進する。ウキクサは排水を肥料として生育する高付加価値バイオマスであり、P23との共生によってその生産速度が約2倍

    研究の内容

    水生植物ウキクサは排水中の窒素やリンを吸収して生育することが可能かつ、リグニンやセルロースをほとんど含まないソフトバイオマスである。そのタンパク質含量は大豆に匹敵する約30%であり、生育環境によってデンプン蓄積量も50%に達する。前者の特徴は家畜飼料としてそのまま利用可能であり、後者はバイオ燃料生産および化成品前駆体HMFを生産するための原料として有用である。このような、次世代バイオマスの生産収率を向上するために、私たちは表層細菌の共生作用による植物生育促進技術開発を行っている。その適用範囲は、ウキクサの栽培以外に野菜・穀類の水耕栽培(植物工場)が想定される。これは遺伝子組換えを伴わない、自然の摂理に従った古くて新しいバイオ技術である。