北海道大学 研究シーズ集

English

や行の研究者:12件

1頁の掲載件数 20 50 改頁しない 分野別アイコン凡例
  • ライフサイエンス
  • 情報通信
  • ナノテク・材料
  • ものづくり技術
  • 人文・社会科学
  • エネルギー
  • 環境
  • 観光・まちづくり
  • 北極域
  • 社会基盤
  • 共用機器
  • 非翻訳領域配列の導入によるタンパク質翻訳効率改変

    ウイルスを模倣することによって、組み換えタンパク質の
    発現効率を3ケタ増減させる

    細胞1個当たりのタンパク質発現効率を現在の100倍に上げることにより、CHO細胞などを用いた組み換えタンパク質作製効率飛躍的に上昇させ、遺伝子工学技術にパラダイムシフトをもたらすことを目的としています。

    研究の内容

    ヒトアデノウイルスは古くから遺伝子導入に利用され、安全性が確認されたウイルスベクター系の代表例ですが、野生型アデノウイルスは感染時に宿主のタンパク質発現をシャットダウンし、自己の後期タンパク質を優先的かつ爆発的に発現するというすぐれた性質についてはあまり注目を集めていません。しかし、アデノウイルス自体には病原性があり組み換えタンパク質精製系にウイルス粒子を使用するのは安全性の面で大きな問題が残ります。そこで、ウイルス遺伝子中のリーダー配列を最適化し組み換えタンパク質の上流に非翻訳領域配列として組み込むことにより、ウイルスの翻訳系を模倣して、既存の発現ベクターからの翻訳効率を100倍以上にすることを目指しています。逆に終止コドン下流非翻訳領域を改変し発現量を数十分の一にすることも可能です。

  • 光るプランクトン

    カイアシ類のGFPとルシフェラーゼ

    海洋生物の中には生物発光をする様々な生き物が居ます。プランクトンの中で最優占するカイアシ類から、蛍光タンパク質(green fluorescent protein: GFP)と分泌型ルシフェラーゼ(発光酵素)を同定しました。

    • 北極海では近年の海氷衰退により、もともと北極海にあった群集(左図の群集B)が、太平洋産種を含む亜寒帯性の群集(群集A)に代わりつつある様子が、1991/92年と2007/08年の比較で分かります。動物プランクトン相に優占するカイアシ類には、生物発光能力を持つ種も多く、右の写真はGFP(右上図)とルシフェラーゼ(右中図)を持つ種です(右下図はカイアシ類の明視野写真)。

    研究の内容

    動物プランクトンは、海洋生態系において基礎生産を高次生物に受け渡す、エネルギー転送者としての役割を持っています。北極海に優占する動物プランクトンはカイアシ類で、大半の種が1年以内の世代時間を持ち、かつホルマリン固定にて、半永久的な試料保存が可能なため、該当海域における生物生産の経年変動を評価するのに適した分類群です。またカイアシ類のうち、いくつかの種は生物発光能力があります。これは、暗い海の中で、捕食されそうになった時に発光し、捕食者への目くらましに使用すると考えられています。カイアシ類から、蛍光タンパク質(GFP)とルシフェラーゼ(発光酵素)を同定しました。

  • 数理的手法に基づくシステム制御技術

    機械システムからエネルギーマネジメントシステムまで

    数理モデルに基づくシステム制御技術は、四輪ロボットなどの機械システムからエネルギーマネジメントシステムなどの社会システムまで幅広い分野に適用できます。本研究室では特に、非線形システムとハイブリッドシステムに対する制御手法を開発しています。

    • 図1 四輪ロボット

    • 図2 高低差(制御リアプノフ)の設定例

    研究の内容

    マニピュレータや自動車のエンジンなど多くのシステムは非線形システムになります。多くの従来手法では個別ケースを考えています。本研究室では制御リアプノフ関数を用いた統一的な制御手法を開発しています。例として、平面を走る四輪ロボットを考えます(図1)。障害物回避や目標位置への移動を達成するために、疑似的に高低差を設定します(図2)。障害物がある場所は高く、目標位置は低く設定します。これにより、四輪ロボットは「低い位置をたどる」という簡単なルールだけで、制御目的が達成できます。
    また、ダイナミクスの切替を含むダイナミカルシステムはハイブリッドシステムと呼ばれ、多くの応用が知られています。最近は、ハイブリッドシステムのエネルギーマネジメントシステムへの適用を進めています。特に、需要家の電力消費モデルを開発しています。

  • 生体骨を模倣した3Dプリント可能で力学的高機能な多孔質構造体

    生体骨の持つ構造的な特徴と力学的な特性を基に、3Dプリント可能で力学的高機能な新しい多孔質構造体を開発。破壊の進展が抑制可能で、高い吸収エネルギ性が可能。等方的な力学特性も実現可能。樹脂や金属を用いて3Dプリンタにより製造可能。

    研究の内容

    規則的な構造の繰り返しを有する一般的な多孔質構造体には、内部構造に起因した特定方向の強度低下や一度破壊が生じると容易に破壊が進展するという力学的課題がある。本シーズでは、生体内環境に最適化された多孔質材料である生体骨(海綿骨)に着目し、海綿骨の構造的な特徴と力学的な特性に基づいて確率的に構築したネットワーク構造を骨格とする新しい多孔質構造体「海綿骨模倣構造」を開発した。樹脂や金属を用いて3Dプリンタにより製造可能であることを確認した。圧縮破壊試験の結果、特定方向の強度低下が抑制でき、初期破壊後の破壊進展が抑制され吸収エネルギが高いことを確認した。本シーズにより、設計自由度が高く力学的に高機能な多孔質構造が設計・製造できる。

    山田 悟史 助教 Satoshi Yamada
    博士(工学)
    工学研究院 機械・宇宙航空工学部門 人間機械システム
  • ミトコンドリア標的型ナノカプセル (MITO-Porter)

    ミトコンドリアに薬物・タンパク質・核酸を導入する技術

    ミトコンドリアは疾患治療、美容・健康維持、ライフサイエンスの発展に貢献するオルガネラとして注目されています。私たちはミトコンドリア標的型ナノカプセル(MITO-Porter)の開発に成功しており、本ナノカプセルの実用化を目指しています。

    研究の内容

    本研究のミトコンドリア標的型ナノカプセル(MITO-Porter)は、細胞膜およびミトコンドリア膜を通過し目的分子をミトコンドリア内部に届ける事が可能です。機能素子を用いた従来技術では送達分子の大きさや種類を著しく制限しましたが、目的分子を封入するMITO-Porterを用いた戦略では分子種によらないミトコンドリア送達を実現します。
    GFP(緑色)を内封したMITO-Porterを調製し、細胞内を蛍光顕微鏡観察したところ、ミトコンドリア(赤色)と重なり合った黄色のシグナルが多数観察される、ミトコンドリアへの効率的な分子送達を確認できました。また、既存の核酸導入試薬(核・細胞質を標的)では不可能であったミトコンドリアへの遺伝子・核酸導入にも成功しています。さらに、生体に適応可能なナノカプセルの開発も行っています。

  • 生物時計を考慮した健康的な生活リズムをデザインするための基盤研究

    生物時計を考慮した健康的な生活・労働環境の提言

    日本人は世界的にみても睡眠時間が短く、睡眠障害による経済損失は約6兆円/年と試算されています。当研究室の専門領域は、睡眠に深く関わる生物時計を研究対象とした時間生物学です。時間生物学研究を推進し、国民の健康に寄与することを目指しています。

    • 当研究室の研究ビジョン.生物時計を調節し健康的な生活を送るためには3つの時計を調節することが重要です。私たちが生来持っている生物時計、生物時計を調節する環境因子である太陽光を制御する環境時計、そして私たちの生活リズムを規定する社会時計です。しかし、私たちの社会を見渡すと、生物時計に逆らった生活をおくるものも少なくはなく、内的同調を保つようなサポートが必要です。

    研究の内容

    生物時計は、私たちが毎日昼間に十分活動し、夜間に良質な睡眠をとれるように行動(睡眠と覚醒のタイミング)と生体内の環境を調節する重要な生体戦略です。しかし、現代社会では夜間交替勤務、時差飛行、24時間労働等により生物時計に逆らった生活を余儀なくされるものも少なくありません。私たちが生涯にわたって健康な生活を送るには、生物時計の構造および機能を理解すると共に、ライフステージや各自の生活習慣に応じて生活リズムを積極的にデザインし、最適化していくことが求められています。当研究室では、光と運動が生物時計に与える影響のメカニズム、時間栄養学を応用した効果的な栄養食事指導法の開発、睡眠・生体リズムの季節変動と生理機能の関連性を明らかにするための研究を進めています。

  • トポロジカル光波の発生・計測技術の開発

    光渦などに代表されるトポロジカル光波は、その特異な性質から近年物質微細加工、情報通信の大容量化や超解像顕微鏡などへの応用が期待されています。我々の研究室ではトポロジカル光波の応用を目指し、現在光源や計測技術の開発を行っています。

    • Figure 1 光渦の強度及び位相分布

    • Figure 2 らせん度計測の概念図

    研究の内容

    光渦は図1に示すようにビーム断面内にらせん状の位相分布とドーナツ状の強度分布を持っています。こうした性質を用いると、従来の光学顕微鏡の空間分解能を遥かに超える性能をもつ顕微鏡やナノメートルオーダーの微細加工が実現できます。私達の研究室では、こうした光と、非常に時間幅の短い(10の12乗~15乗分の1秒)超短光パルスと呼ばれる光との融合によってさらに新しい応用展開を可能にすべく研究開発を行っています。現在基盤技術の開発を主として行っており、らせん位相をコンピューター制御可能で、かつ数十GWのピークパワーを持つ超短光渦パルスの発生に成功しています。また、らせん位相度を瞬時に計測する全く新しい計測法の開発にも成功しています(図 2)。こうした独自に開発した基盤技術を用いて現在物質加工や通信技術への応用を進めています。

  • コンテンツツーリズムの応用研究

    コンテンツツーリズムを通した文化の伝播・受容に関する国際比較研究とその応用としての観光まちづくり施策の立案

    コンテンツツーリズムをポップカルチャーの伝播と受容の側面から捉え直し、そうしたツーリズムが他者理解に果たす役割を明らかにすべく国際比較研究を展開しています。さらにそこで得られた知見を観光まちづくりの現場に具体的施策として還元しています。

    • 図:コンテンツツーリズム型観光まちづくりのための
      トライアングルモデル

    研究の内容

    本研究では、コンテンツツーリズム(「物語」や「作品」、それらを構成する諸要素によって意味が与えられた場所を、実際に訪れ、当該コンテンツを体感する行為)を対象として、以下の三点を目的とした国際共同研究を展開しています。
    第一に、コンテンツツーリズムをポップカルチャーの伝播と受容の側面から捉え直すことを通して、そうしたツーリズムが他者理解に果たす役割を明らかにすること。第二に、これを踏まえて、コンテンツを核とした交流型観光まちづくりのあり方をモデル化すること。そして第三に、我が国の置かれている地政学上とりわけ国際的な相互理解が求められている東アジア地域に着目し、日本のコンテンツをきっかけとしたコンテンツツーリズムが、我が国の文化的安全保障に向けてどのような可能性と課題を有しているのか考察を行うこと、です。

    山村 高淑 教授 Takayoshi Yamamura
    博士(工学)
  • 環状ポリエチレングリコールを用いたナノ粒子安定化

    高分子の「かたち」に依存した新奇安定化法

    本研究は環状ポリエチレングリコールを用いた金属ナノ粒子の新奇分散安定化手法の開発です。これまでに当研究グループは、環状高分子から成る分子集合体が優れた安定性を有することを見出しました。この現象を応用してナノ粒子の高分散安定化を行うものです。

    • 金ナノ粒子(AuNPs)の安定性評価。環状PEGを用いた場合、分散安定性が良く表面プラズモンの波長が保持されるが(522 nm)、一般の直鎖状PEGの場合、AuNPsの凝集により長波長へ変化する(547 nm)。また、透過型電子顕微鏡像からも環状PEGを用いた場合のAuNPsの分散および直鎖状PEGを用いた場合の凝集が確認できる。

    研究の内容

    現在、多数のナノ粒子系医薬品の研究が行われていますが、ドラッグデリバリーシステム(DDS)キャリアも含めそれらの多くは、生体適合性を有するポリエチレングリコール(PEG)で表面を覆われたナノ粒子になります。これに関して、私たちは環状PEGで修飾した金ナノ粒子(AuNPs)が高塩濃度に対して高い分散安定性を示すことを見出しました。すなわち、分子量4000の環状PEGで修飾されたAuNPは、生理条件よりも高濃度である180 mMのNaCl溶液で1週間以上分散安定性を保持したのに対し、同分子量の直鎖状PEGを用いた場合、僅か45 mMのNaClで3時間内に凝集・沈殿しました。この環状PEGを用いた新奇手法は、造影剤や磁性ナノ粒子を含む種々のナノ粒子系医薬品に応用可能です。

  • ユーザの意図を読み取るインタフェースの開発

    ロボットやマウスを自由にコントロールする

    ユーザと機械が相互に学習することで、ユーザの意図通りに機械を操作することを可能とするインタフェースの開発を行っています。ロボットなどの操縦や、マウスやトラックボールなどのポインティングデバイスの入力も容易にします。

    研究の内容

    ユーザがヒューマノイドロボットなど多自由度のロボットを動作させるためには、コマンドがどの操作に対応しているかを覚える必要があり、コマンドの数が多くなるとユーザは負担が大きくなります。一般には、どんな人にも覚えやすく、使いやすいコマンド群を用意することは難しいため、作り上げたものが必ずしもユーザにとって使いやすいインタフェースとなる保証はありません。本研究では、ユーザと機械の相互作用の中からユーザの意図を読み取り、ユーザが直感的に操作可能なインタフェースの構築を行っています。その結果、各ユーザの特性にあった使いやすいインタフェースが開発できます。この技術を、マウスやトラックボールなどを操作する手の動きなどをセンシングすることでデバイスがなくても操作ができる、エアマウス、エアトラックの開発にも応用しています。

  • 先端研究基盤共用促進事業(先端研究設備プラットフォームプログラム)

    顕微イメージングソリューション プラットフォーム

    共用機器管理センターに設置している”同位体顕微鏡システム”を産学官共用に推進拡大する

    • 【利用例】核酸物質の細胞内局在を観察するにあたり、従来の蛍光物質で標識する方法では観察対象の化学的性質が変化してしまう可能性があります。
      本利用課題では、核酸物質を安定同位体18Oで標識し、それを同位体顕微鏡で観察することで、本来の局在を観察することに成功しました。(Hamasaki et al, 2013, Nucleic Acids Research, 41 (12), e126, doi: 10.1093/nar/gkt344)

    研究の内容

    ”同位体顕微鏡システム”の特質である「安定同位元素イメージング技術」を有効活用する利用課題を募集、選定、実施することにより産業イノベーションへの展開を図ります。
    同位元素というと、すぐに年代測定が思い浮かびます。事実、これまで同位体顕微鏡システムは主に鉱物など宇宙科学の分野で、同位体比の分析に使われてきました。これは、入手した試料の断面の「ありのまま」を観察して得られる成果です。その測定手法の発想を変えることで、同位体顕微鏡システムを産業応用に展開できます。すなわち、「ありのまま」を観るのではなく、積極的に同位体元素を調べたい試料に「ドープ」することで、今まで見ることができなかった目的のイメージングを測定することが可能になります。しかも、放射性同位体ではなく、安定性同位体を使って安全に作業することができます。

  • ナノ知識探索プロジェクト

    ナノ結晶デバイスの実験記録からの知識発見

    本研究では、ナノ結晶デバイスの研究開発の過程で作成される実験記録やその成果を取りまとめた論文などから、デバイス開発に有用な情報を抽出し、整理する知識マネージメントの研究を行っています。

    研究の内容

    本発表では、実際のナノ結晶デバイス開発の研究者からのインタビューに基づいた、実験記録管理システムを提案しています。本システムでは、これまで別々に保存記録されていた実験に用いていたパラメータの記録と、その結果である実験記録を統合的に管理する方法を提案しています。また、最終的な実験のまとめである論文からの情報抽出を行うことにより、研究者によって行われる一連の実験の目的や特徴などを詳細に分析し、様々な事例間の類似性などを議論するための基盤として活用する方法を提案しています。本手法では、少数の手作業で作成した情報抽出のためのコーパスに、機械学習の方法を用いることにより、未知の論文に対し、有用な情報抽出を行うための方法を提案しています。