北海道大学 研究シーズ集

English

11. 住み続けられるまちづくりを:32件

1頁の掲載件数 20 50 改頁しない SDGs別アイコン凡例
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに、そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任、つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 銀系化合物を用いる水素の活性化と接触合成反応

    高活性水素イオンの生成触媒の開発とCO2メタネーション反応への利用

    Gin De Ride(銀-Derived Hydride, GDR)は、当研究室が発見した銀系化合物から生成する高活性水素イオンで、一部を低温燃焼させることで熱を供給し、余剰GDRは例えばCH4合成に利用することで、反応が効率化できる。

    • 図1 GDR*生成触媒のイメージ図
      *GDR, Gin De Ride(銀-Derived Hydride)

    • 図2 GDR生成触媒を混合したニッケルアルミナ触媒の二酸化炭素メタネーション活性の例(上は反応器出口ガス濃度、下は熱電対温度)

    研究の内容

     水素の自然発火温度は525℃前後と高く、低温で燃焼させるためには、高活性水素を製造可能な触媒の利用が不可欠である。これまでパラジウムや白金系触媒が用いられているが、供給面や価格面などの不安を抱えている。
     当研究室では、従来の触媒に比べ供給面や価格面で有利な触媒の研究に取り組み、その結果、高活性な水素イオンを生成可能な銀系化合物を発見した。本触媒は、水素を供給すると高い活性を持つ水素イオン“Gin De Ride(銀-Derived Hydride, GDR)”を与えるため、まず低温で水素と酸素を同時供給することにより生成GDRを燃焼させ、次いで発生熱と余剰GDRを利用すれば各種合成反応を効率的に行うことが出来る。
     現在、CO2メタネーション用の触媒との複合化により、低温で反応が進行することを見出している。

  • 光干渉リソグラフィによる微細パターン創成

    空間位相制御によるマスクレスでの自由微細パターン創成

    光干渉リソグラフィに空間位相制御を導入して,マスクレスで自由パターンを転写創成する手法を開発。これまでに,従来の2ビーム干渉では実現困難であった2次元干渉パターンの生成に成功しており,現在パターン転写およびその精度向上に取り組んでいます。

    • 図1

    • 図2

    • 図3

    • 図4

    研究の内容

    半導体露光装置,超精密工作機械や精密計測機に用いられる超精密位置決め機構において位置検出センサとして用いられるリニアスケールでは,マイクロメートル級のピッチを有する回折スケール格子が位置検出の「目盛り」として用いられています。また近年,微細パターンを有する機能性表面に対する需要が様々な分野で高まっています。
    本研究では,空間位相変調したレーザ光の重畳で自在生成する干渉縞の転写で,マスクレス自由パターン創成を狙っています。これまでに,従来の2ビーム干渉では原理的に創成が困難であった2次元干渉パターンの生成に成功しています。

  • 超精密光学式角度センサ

    0.001 arc-second超の高分解能を実現し,回折スケール格子ピッチ評価に援用

    超精密位置決めステージなど,精密移動体の微小角度変位を検出する光学式角度センサを開発しています。レーザオートコリメーション法ベースの角度センサとして世界最高レベル(0.001 arc-second超)の分解能を達成しています。

    • 図1

    • 図2

    • 図3

    • 図4

    研究の内容

    半導体露光装置,超精密工作機械や精密計測機に用いられる超精密位置決め機構においては,ステージ移動中の微小回転運動誤差の影響が無視できません。
    本研究では,これら精密移動体の微小角度変位を高い分解能で検出する,高精度光学式角度センサの開発に取り組んでいます。低ノイズ信号処理回路の開発および光学系の最適化設計により,レーザオートコリメーション法ベースの角度センサとして世界最高レベル(0.001 arc-second超)の分解能を,帯域1 kHzレベルで達成しています。また,この角度センサ技術をもとに,回折スケール格子全長に渡り,位置検出の「目盛り」の揺らぎをピコメートル級分解能で校正する手法を開発中です。位置決め技術の更なる高精度化を狙います。

  • 社会実装に到達するマルチメディア人工知能技術

    産学連携研究を通してAI技術の実用化に迫る!

    本研究では、画像・映像・音楽・音声を中心とするマルチメディアデータを対象とした人工知能技術の開発を行っています。特に、産学連携研究を中心として、医用画像、社会インフラデータ、材料科学等に関わるデータを研究対象として扱っています。

    • 本研究において構築されている最先端のAI研究群

    • 本研究が加速する異分野連携と社会実装への挑戦

    研究の内容

    我々は、世界最先端の人工知能研究だけでなく、融合領域研究を推進し、実社会の課題解決に挑戦しています。具体的に、医用画像研究では国内の多数の医療機関と連携し、人間の診断精度を超えるAI技術を構築しました。また、医療・土木の研究では、AI研究の課題でもある少量データ学習を可能にするだけでなく、判定結果を説明可能にするExplainable AI (XAI)を構築し、実際の現場で利用可能な技術の実現を行っています。また、近年では、人間の脳活動データや視線データ等、人間の興味や関心に強く関連する情報をAIの学習過程に導入することで、人間のように判断可能なヒューマンセントリックAI技術の構築を行っています。

  • 小型電子加速器中性子源を用いた
    通信機器のソフトエラー試験

    宇宙線に起因する通信機器の誤動作を未然に防ぐ

    通信ネットワークを支える機器の半導体デバイスの高集積化が進展してきており、宇宙線中性子によるソフトエラーの確率が高まることが懸念されている。その対策のため、北大の小型加速器中性子源を利用して、通信機器のソフトエラー試験を実施している。

    • 中性子ソフトエラー試験の概念図(NTT提供)。3台の装置に同時にビームを照射することができる。

    研究の内容

    通信機器の大容量化・高機能化に伴い、半導体デバイスの高集積化が進んでいる。しかし、宇宙線中性子によって、ビット情報が反転し動作が混乱するソフトエラーの増加が懸念されている。そこでNTTと共同で、小型電子加速器駆動中性子源によりソフトエラーを再現させ、トラブルに対して事前に対策技術を開発できる場を提供できるようにした。これにより、故障発生率を事前に予測できるようになると共に、エラー検出や運用対処の確認が可能となり、機器の信頼性の向上につなげられる。
    本技術の特徴は「小型加速器中性子源」の活用である。従来は大規模加速器中性子源が必要とされてきたため、試験時間や実験スペースの十分な確保は困難であった。しかし本学における研究により、中性子強度が自然界の約数百万倍の施設でも、十分な試験が可能であることを実証した。

  • 文化遺産保存活用と観光に関する研究

    東南アジアにおける文化遺産国際協力プロジェクト立案・実施

    文化遺産のなかでも、特に遺跡に焦点を当て、東南アジアにおける文化遺産保存活用と観光の関係について研究をおこなっています。研究成果をもとに、他機関と協働し、文化遺産国際協力を実施しています。

    • アンコール・ワット

    • ピマーイ遺跡(タイ)

    • 現地行政とのまちづくり協議の様子(パダン)

    • 修復中の遺跡と観光客(ジャワ)

    研究の内容

    東南アジアには、アンコール遺跡群(カンボジア)、ボロブドゥール(インドネシア)など、多くの遺跡があります。政治的な混乱に加え、スマトラ沖地震・津波(2004年)などの自然災害による危機に直面しながら、各国は、それら遺跡の保存と活用に取り組んできました。観光は、遺跡に悪影響を与えると危険視されていましたが、1999年に国際文化観光憲章が採択されて以降は、文化遺産保存に不可欠なものとして捉えられるようになっています。例えば、年間約200万人以上の観光客を集客するアンコール遺跡群では、観光産業は国家レベルでの重要な外貨獲得手段となっており、広大な遺跡の保存事業も、観光客からの収益金があてられています。一方で、増え続ける観光客と遺跡保存のバランスは、地域の環境、貧困問題などが絡んで、より複雑なものとなっています。

  • 加速度センサーによるつまずき場所の特定

    高齢者の転倒予防のために

    転倒による重篤な怪我を避けるために予兆である“つまずき”の多い場所を普段の生活者の行動から探すシステムを検討した。サンダルに埋め込んだ加速度センサーによりつまずいたことを、天井の赤外線センサーネットワークによってつまずいた場所を特定する。

    研究の内容

    高齢者の緊急搬送の約8割は転倒事故だそうである(2014年東京消防庁調べ)。衰えた身体能力に意識が追いつかず小さな段差や履物、衣服につまずく。転倒を検出する研究は多いが実際に転倒を起こしてからでは遅い。そこで、よくつまずく箇所を検出して転倒を誘引する原因を予め取り除くことを考えた。ウェラブル(身につける)な装置は物忘れや装着への心理的抵抗に関して、監視カメラなどのノンウェラブル装置では死角やプライバシィの保護に関して問題がある。本研究では、普段履きのサンダルなどに加速度センサーをとりつけて“つまずいた”ことを検出する一方、連動して働く天井に設置した赤外線センサーネットワークでその箇所を特定する。実験では転倒は容易に区別できたが、つまずきを通常歩行から区別する精度は現状1/4程度であるため今後精度向上が望まれる。

  • クラウド版地中熱ヒートポンプ設計・性能予測プログラム
    ”Web Ground Club”と日本全国3次元グリッド地層データベース

    複層地盤や地下水流れ効果、冷却塔の付帯も計算できる

    10 年程前に地中熱ヒートポンプシステム(GSHP)設計・性能予測ツールGround Club(GC)を開発し,約150 本頒布.現在,クラウド対応の進化版ツールGCCを試用公開.日本全国 3 次元地層物性データベースを構築,GCCに搭載.

    研究の内容

     

    長野 克則 教授 Katsunori Nagano
    博士(工学)
  • イベント情報推薦システム

    イベント数週間前から開催日までにデータを収集して
    適切にイベント情報を推薦するシステム

    イベントに関する情報は情報としての有効期間が短く、従来の情報推薦技術では扱いにくいものでしたが、ユーザの興味や地理的特性など複数の要因を組み合わせることで柔軟に推薦を行う手法を開発しました。

    研究の内容

    ユーザの過去の情報閲覧履歴から、どのようなジャンルや情報源を好むのかを推定し、また興味の似通ったユーザの閲覧傾向を参考にしながら、対象ユーザが興味を持つイベント情報を推定します。さらに、ユーザの地理的特性を考慮して、最終的にユーザへ情報提示を行います。システム全体のパフォーマンスが上がるよう、情報配信のタイミングを全体で調整しています。

  • 高精度音響位置認識、時刻同期、選択的フリッカレス可視光通信

    サブミリオーダー位置計測とその展開

    従来手法より2桁高精度な測距技術および照明を用いた独自の時刻同期技術とを統合し、携帯端末やロボットの3次元位置ならびに速度を高速かつ正確に推定する。さらに、特定の移動体に対する選択的フリッカレス可視光通信や位置依存の情報配信を実現する。

    • スマートフォンによるジェスチャ認識

    • 室内照明による可視光通信と
      ロボット位置推定

    • ロボットトラッキングシステム

    研究の内容

    室内でのユーザや移動物体の位置をリアルタイムで正確に取得するため、位相一致法と呼ばれる高精度時刻基準点設定法を独自に提案した(測距誤差0.03 mm)。この技術を基にスマートフォンユーザのジェスチャ認識、ロボットトラッキングシステム等を開発した。さらに、カメラ機能搭載の携帯端末とLED照明を用いた独自のアルゴリズムにより、マイクロ秒オーダーの時刻同期を実現した。LED変調と端末位置の位置情報を統合することにより位置依存の情報配信や室内照明によるフリッカレス可視光通信が可能になる。

  • レーザ計測点群の認識・モデル化技術

    人が活動する環境や構造物の分析・維持管理・計画の高度化を目指して

    3次元レーザ計測点群から、室内や道路、柱状物(電柱や街灯)、街路樹、建物といった、人が活動する環境に存在する物体や構造物を自動で認識し、3次元モデル化するための点群処理の理論とアルゴリズムを開発しています。

    • 部屋のモデル化

    • 柱状物体検出とパーツ認識

    • 建物LODモデリング

    • 街路樹メッシュモデリング

    研究の内容

    地上設置型や車載型の3次元レーザ計測システムで得られる『点群』から、屋内外の環境における物体や構造物を自動で認識しモデル化する技術ならびに基礎的な点群データ処理手法の研究を行っています。認識とモデル化の対象は、任意形状の物体、部屋、電柱や街灯等の柱状物、樹木、道路面、建物など、幅広く扱っています。点群からのメッシュモデルやポリゴンモデル、CADモデル生成技術に加え、その基礎となる点群の位置合せ(レジストレーション)、領域分割(セグメンテーション)、形状特徴抽出、機械学習や手続きに基づく物体認識に関する研究も行っています。本技術により、現況を忠実に反映した3次元モデルを用いた、環境や構造物の詳細な認識と分析、維持管理、各種シミュレーションや改善計画が可能となります。

  • 動画像リアルタイム処理技術

    アルゴリズム開発とそのハードウェア実装

    本研究室では、近年大容量(高解像度・高フレームレート)化が著しい動画像を対象として、画像平滑化(スムージング)や明るさ補正を中心とした、各種画像処理アルゴリズムならびにそのリアルタイム実装に関する研究開発を推進しています。

    • (a)入力画像 (b)推定照明光 (c)明るさ補正結果
      図1 Retinex理論に基づく動画像適応的明るさ補正

    • (a)入力画像(b)画像平滑化結果(c)実装で用いるFPGAボードの例
      図2 コスト最適化に基づく画像平滑化

    研究の内容

    画像処理では一般に取り扱うデータ量が膨大であるため、ハードウェア/ソフトウェアを組み合わせたシステム全体としての最適化が必要不可欠です。本研究室では、画像処理のアリゴリズムおよびその実装に関する検討を相補的に行うことにより、画像処理システムの構成手法に関する研究を行っています。その成果の1つであるRetinex理論に基づく動画像リアルタイム適応的明るさ補正(図1)では、逆光などの照明変化が大きい状況下で撮影された映像の明るさを、適応的かつリアルタイムで補正することが可能です。また、コスト最適化に基づく高品位な画像平滑化(スムージング) (図2)に関する研究も進めており、これは写真のイラスト化といった画像加工処理や、各種画像処理の前処理、明るさ補正、細部強調などへの応用が期待されます。

  • 量子暗号鍵配付装置の安全性保証技術

    究極の暗号の安全性を実験的に保証する

    量子暗号鍵配付を用いることで将来いかに技術が進歩しても高度な秘匿性を保つ暗号鍵を光通信により共有できます。本研究は、量子暗号の実用化に向け、実際に作られた装置で安全性を実験的に保証するための技術を提供します。

    • (量子暗号鍵配付装置の構成と安全性保証のためのチェック項目)

    • (実際の量子暗号鍵配付装置)

    研究の内容

    量子暗号鍵配付は原理実証の段階をクリアし、実用化を意識した研究が進められています。究極の秘匿通信を実現する技術として、世界各地で実証実験を含む研究が進められています。当研究室では理論的な部分と実装に関わる部分を同時に研究しています。現実世界では理論通りにいかないことが多く、仮説と実験結果とのズレが生じることが多々ありますが、そのズレの影響を評価し、現実の装置で作られる暗号鍵の安全性を定量的に保証することを目指しています。そのため、理論的な研究と実際の装置開発を橋渡しする形で実証研究を行っています。この研究によって量子的な装置を測定、評価して現実化することが可能になり、将来の量子ネットワークの実現に寄与できるものと考えています。

  • 発想支援型マルチメディア検索システム

    画像や映像などのデータを有機的に連携することで、検索者に気づきを与え発想を支援する情報検索システム

    発想支援型マルチメディア検索システムは、画像、音楽、映像等の非構造化データを有機的に連携し、内在する類似性の抽出、およびその効果的な提示によって、検索者に気づきを与え、発想を支援する情報検索を実現します。

    • 画像検索システムImage Vortexは実用化され、Image Cruiserとして利用されています。(http://spir.ist.hokudai.ac.jp/shiga_photo.html)

    • ・連想型映像検索エンジン (Video Vortex)

    • ・トリガーレス情報推薦システム (Query is You! & COSMOS)

    研究の内容

    異なるメディア間での関連付けと類似性の導出、マルチメディア情報が持つ曖昧性を許容した連想型の検索スキーム(融合型検索)、ユーザネットワークによる個人の嗜好のモデル化、及びユーザインタフェースによる嗜好の類似性のビジュアライゼーション(個人適応型検索)を逸早く導入した新たな検索エンジン及びインタフェースを実現しています。これらを用いることによって、マルチメディアコンテンツ固有の多義性と曖昧性を効果的に利用した全く新しい検索が可能となっています。

  • バイオメディカル光イメージングのための数理アルゴリズム開発

    生体における光伝搬数理モデルの構築

    バイオメディカル光イメージングの発展には、高精度かつ計算効率に優れた光伝播モデルが必要です。本研究では、光伝播を高精度に記述する輻射輸送方程式の高速解法を構築することに成功しました。提案手法による光診断・治療の高度化に取り組んでいます。

    • 近赤外光
      近赤外光(700nm-900nmの波長領域の光)は生体深部まで伝播することが可能で、図のように成人男性の手の厚み程度であれば透過することができます。

    • 伝播モデルの構築:輻射輸送方程式の高速解法
      光拡散方程式(DE)が成立しない検出点位置において、輻射輸送方程式(RTE)と本研究提案の連結モデル(Hybrid)による積分光強度Φは良く一致しています。

    • ヒト頸部内における光伝播
      頸部前方(紙面上部)から光を照射した場合における積分光強度分布シミュレーションです。甲状腺の情報を有した光は検出可能であると考えられます。

    研究の内容

    本研究では、輻射輸送方程式に基づいたバイオメディカル光イメージングの数理アルゴリズム構築を行っています。従来の数理モデルに基づいたイメージングでは適用できなかった生体組織や生体部位にも適用でき、また画像解像度の優れたイメージング技術を目指しています。これまで、輻射輸送方程式の数値計算負荷は膨大であることから、小さいサイズの生体に適用が制限されていました。本研究では、輻射輸送方程式と光拡散方程式を連結することによって、高精度かつ計算効率に優れた光伝播モデルを開発することに成功しました。開発した光伝播モデルに基づいた光イメージングは、様々な生体組織・部位に適用可能です。現在は、ヒト頸部における甲状腺腫瘍の光診断や、生体組織における光学特性値のin-vivo評価への適用に向けて取り組んでいます。

  • 均一系パラジウムナノ粒子触媒による水素化反応

    シスアルケンとアミン類の選択的合成

    医薬、農薬、化成品の原料等として有用なシスアルケンやアミン類をアルキン、有機ニトロ化合物やアジド類の水素化により効率的に合成できる。独自に開発した均一系パラジウムナノ粒子は、溶液として1年以上保存可能で、大気中で容易に取り扱うことができる。

    研究の内容

    酢酸パラジウムをアルキン存在下でカリウムtert-ブトキシドまたは水素化ホウ素ナトリウムで処理することで、均一系のパラジウムナノ粒子が得られることを見いだした(図1)。このナノ粒子は、溶液で1年以上保存可能で、大気中で容易に取り扱うことができる。水素化触媒として優れた性能を示し、アルキン(1)、有機アジド化合物(3)、芳香族ニトロ化合物(5)からシスアルケン(2)、アミン類(4、6)をそれぞれ効率的に合成できる。シスアルケン選択性や官能基許容性(ケトン、アルデヒド、ベンジル位ヒドロキシ基等を損わない)に優れている。触媒活性も極めて高く、基質(原料)の1,000分の1から50,000分の1当量のパラジウムを用いるだけで反応はすみやかに進行する。経済性や利便性に優れており、企業と共同で事業化検討も行っている。

  • 中性子とX線を複合利用した超階層構造イメージング

    量子ビームを複合利用し、幅広いスケールに渡って不可知情報を非破壊的に可視化するイメージング

    パルス中性子透過分光イメージングは、他の顕微法では視えない情報を非破壊に可視化できる手法として注目を受けています。X線のような他の量子ビームと複合解析すれば画像だけではわからない情報も可視化することが可能になります。

    研究の内容

    小型加速器を利用する実験施設として半世紀近い歴史がある北大施設は、先導的な施設として世界的に注目されています。北大では主にパルス中性子ビームを作っており、それで得られる透過スペクトルから、結晶構造やミクロ組織、内部応力、温度等の情報を、試料全体にわたる分布として2次元の実像上にマッピングすることが可能です。一方、X線CTでは物体内部の3次元構造を測定できるので、両者の結果を複合的に解析し、相乗的に物体内部情報を理解する研究を行っています。図は中性子とX線による相乗イメージングとして、単独では得られない元素情報をX線CTによる内部構造にマッピングしたイメージを示しています。X線CTではAl円筒中のワイヤの存在がわかりますが、中性子の情報を加えるとそれぞれが異なる素材とわかります。

  • 非破壊CT-XRD連成法の開発とその応用

    セメント硬化体微細組織の可視化

    コンクリート内部の微細組織に対して、数ミクロンの精度でその幾何学的空間情報を取得できるCT法、および関心領域の水和物や変質を調べる回折法を連成させる新しい測定手法「非破壊CT-XRD連成法」を開発して、革新的セメント系硬化体材料を開発する。

    • 「非破壊CT-XRD連成法」の概念図

    • ひび割れCT画像(左)と観察座標における劣化前後の回折図の比較(右)

    研究の内容

    コンクリートは、セメントと水との水和反応によって岩(骨材)を結合することで、構造用硬化体になります。一方、構造材料としての宿命である荷重や気象/環境作用によって、ひび割れが発生、進展したり、強酸作用、大気や海水、地下水などの浸食や物質侵入に伴う化学反応で劣化することがあります。社会インフラを長期間安定して利用するために、「虫の目」でコンクリート内部組織を観察して、そこで生じる異変を見つけることが大切です。
    先駆的「非破壊CT-XRD連成法」は、放射光が提供する高輝度な白色X線を試料に照射して、選択的に25keVの透過単色X線から3次元構造体を可視化します。また、複数のスリット操作から特定の関心領域のエネルギー分散型X線回折を実行して、ポルトランダイトやカルサイトなどの水和物やその変質、骨材鉱物を特定します。

  • 人類遺跡を文化資源・地域資源として活用する

    わたしのマチにも「縄文エコミュージアム」を

    遺跡を調査して、「エコミュージアム」の「サテライト」として〈整備保存〉することによって、その土地で暮らす人たちの地域資源として、また人類共有の文化資源として、日常的・持続的に活用するための実践と仕組み作りに取り組んでいます。

    • 噴火湾北岸縄文エコミュージアム(JEM)のイメージ

    • 解明された遺跡の内容に基づいた『JEMの人類史ストーリー』の1例

    研究の内容

    遺跡を開発工事のやっかいものとするのではなく、その土地で生活する人たちの地域資源として、また人類共有の文化資源として、価値転換します。そのために遺跡の一部を計画発掘して、「エコミュージアム」の「サテライト」として〈整備保存〉します。エコミュージアムとは、いわば屋根や壁を必要としない博物館です。サテライトとは野外にある展示対象です。その土地の人たちと共に、遺跡を「歴史遺産」へと整備保存しながら、その中で暮らすことに誇りを持ち、ホストとしてエコミュージアム活動に参画・参加します。遺跡の計画発掘は、地元の方々や教育委員会との連携の下に、大学の教育プログラムの一環である「考古学実習」として実施します。大学教育の一端を地域で実践することに意義を見出し、同時にそのこと自体がエコミュージアム活動の実践になります。

  • GISと地理空間情報の活用法開発

    高度情報化社会に向けての人文地理学的アプローチ

    GIS(地理情報システム)とは、地理空間情報(位置情報付きのデータ)を分析・検索・表示するためのシステムです。本研究室では、地域計画や防災計画の支援などを目的として、地理空間情報に関するGISの分析方法や可視化方法の開発を行っています。

    • オープンデータとビッグデータを活用した津波避難速度低下地点の特定
      垂直方向に飛び出した部分(赤色は非積雪期、青色は積雪期)が著しく速度の落ちる部分であり、移動の障害が存在すると考えられる。この結果から避難移動をスムーズにする方策を検討できる。

    研究の内容

    本研究室ではGISを用いて、地理院地図や国土数値情報など国が整備している地理空間情報の他に、自治体などが整備しているオープンデータや、GPSで取得した移動履歴などのビッグデータの活用について研究を進めています。例えば、この成果は「積雪寒冷地の津波避難に関する計画策定支援」などで活かされています。積雪寒冷地の冬季環境(路面凍結、雪による道路幅減少など)は、臨海地域における津波避難を著しく困難にしています。本研究室は、この状況における避難困難地域の画定、避難困難人口の推定、避難場所の収容能力評価など計画策定に必要な多くの情報を生成し、その技術や成果を公表しています。この様に、地理学的な視点をもって社会的有用性の高い情報を容易で迅速に創造する技術を開発し、高度情報化社会の基盤形成に資する研究を続けています。

    橋本 雄一 教授 Yuichi Hashimoto
    博士(理学)