北海道大学 研究シーズ集

English

17. パートナーシップで目標を達成しよう:9件

1頁の掲載件数 20 50 改頁しない SDGs別アイコン凡例
  • 1. 貧困をなくそう
  • 2. 飢餓をゼロに
  • 3. すべての人に健康と福祉を
  • 4. 質の高い教育をみんなに
  • 5. ジェンダー平等を実現しよう
  • 6. 安全な水とトイレを世界中に
  • 7. エネルギーをみんなに、そしてクリーンに
  • 8. 働きがいも経済成長も
  • 9. 産業と技術革新の基盤をつくろう
  • 10. 人や国の不平等をなくそう
  • 11. 住み続けられるまちづくりを
  • 12. つくる責任、つかう責任
  • 13. 気候変動に具体的な対策を
  • 14. 海の豊かさを守ろう
  • 15. 陸の豊かさも守ろう
  • 16. 平和と公正をすべての人に
  • 17. パートナーシップで目標を達成しよう
  • 耐水性が高く透明な酸化グラフェン/抗菌・抗ウイルスコーティング

    ナノカーボン材料の酸化グラフェンと,抗菌・抗ウイルス剤を複合化した,新しいコーティング法を開発しました。耐水性が高く,透明で基材の色に影響を与えないことから,水周り衛生に向けた新しいアプローチとして期待できます。

    • 酸化グラフェン抗菌・抗ウイルスコーティングの方法

    • 酸化グラフェン(GO)と抗菌・抗ウイルス剤(界面活性剤:CSAA)複合膜の耐水性と抗菌特性のメカニズム

    研究の内容

    微生物は水の存在する湿潤環境を好むことから,手洗い設備等の抗菌・抗ウイルス性が強く求められています。しかし,これまで水周り環境に,簡便かつ長期的に安定して抗菌・抗ウイルス効果を得ることは出来ませんでした。酸化グラフェンは,厚さ約1nmのシート構造を持つナノカーボン材料で,多数の酸素官能基を有することから様々な分子やポリマーと強く相互作用します。この性質を利用して,基材の表面に酸化グラフェン超薄膜を強固に付着させ,さらに抗菌・抗ウイルス剤を結合させる新しいコーティング技術を開発しました。酸化グラフェン膜は透明で基材の色味を損なうことも無く,基材との結合も強いことから水で洗っても脱落しません。また水中で1か月間保管した場合でも,酸化グラフェン膜は剥離脱落することなく基材の表面に残存していることを確認しました。

    宮治 裕史 教授 Hirofumi Miyaji
    博士(歯学)
  • 独創的糖鎖誘導体ライブラリの作成技術 × どこでも使用可能なマイクロアレイ解析システム

    糖鎖自動合成技術を活用した独創的ライブラリ × オンサイト医療や研究を支えるマイクロアレイ技術

    糖鎖関連相互作用は感染症やがん診断等において重要な標的である。糖鎖自動合成技術開発の過程で構築・蓄積した糖鎖、複合糖質、糖質関連阻害剤、およびその誘導体ライブラリの活用法としてどこでも利用可能なマイクロアレイ装置の開発を行った。

    • 糖鎖自動合成技術からの飛躍

    • どこでもマイクロアレイの未来

    研究の内容

    マイクロアレイ技術は構造や配列が明確な多数の化合物ライブラリと検体成分との相互作用を一斉比較解析可能な技術です。また、我々は糖鎖自動合成技術を核とした独自糖質化合物ライブラリをマイクロアレイ解析用分子として設計・制作するための最先端技術を有しています。糖質が有する相互作用情報は、血液型やO157等の血清型、がん診断マーカー(CA○○○)など、体外診断用バイオマーカーとして幅広く使用されています。さらに、感染症の変異に伴う感染パターン解析やワクチン効果の詳細な解析など、検体収取とマイクロアレイ解析をスマートホンを端末としてその場で行い、オンライン診断に使用可能な独立電源型モバイル解析装置の開発に成功しました。

    比能 洋 教授 次世代物質生命科学研究センター 副センター長 Hiroshi Hinou
    博士(工学)
  • 糖タンパク質から直接糖鎖パターンを解析する技術 

    ~【世界初】前処理不要の糖鎖選択的イオン化技術~ (北大単独出願、単独発明者技術です)

    糖タンパク質や体液のような複雑な高分子や混合物中の糖鎖成分をMALDI法により選択的にイオン化する世界初の質量分析技術を発見しました。この技術は卵白や体液のような複雑な混合物中の糖鎖成分の直接解析にも利用可能であることも実証しました。

    • 従来の直接プロテオミクスと同一手順で直接グライコミクスを実現!糖タンパク質製剤の品質管理や糖質資源探索に新たな道を提供できます!

    研究の内容

    糖タンパク質上の糖鎖パターンはそのタンパク質の体内動態を決定する因子であり、重要なバイオマーカーです。これまで糖鎖パターン解析には糖鎖の切り出し、化学修飾、精製等の煩雑な操作が必要でした。質量分析は微量の生体分子を直接イオン化可能な超高感度高分解能分析技術です。しかし、糖タンパク質のような複合糖質や体液のような複雑な高分子や混合物中の糖鎖成分を選択的にイオン化する方法が存在していなかったため、先述の煩雑な前処理を必要としていました。我々は世界初の複合糖質糖鎖成分の選択的開裂と選択的イオン化を同時に達成し、糖タンパク質上の糖鎖パターンの直接解析に成功しました。また、この技術により卵白など複雑な混合物中の糖鎖パターンも直接解析可能となることを実証しました。

    比能 洋 教授 次世代物質生命科学研究センター 副センター長 Hiroshi Hinou
    博士(工学)
  • ガバナンスの理論と実践を踏まえた
    行政システムの設計・構築

    官民協働による安全・安心な地域・社会づくり

    安全・環境規制や科学技術政策、地方創生などの事例研究を踏まえ、様々な「技術」の社会導入・普及に係る政策問題の解決に資する行政システムを利害関係者の「協働」により構築していく手法について、ガバナンスの理論と実践の観点から研究しています。

    • 2016年5月刊行の私の規制研究の成果です(ISBN: 9784000611213)。規制基準の国際調和化、技術情報の分散化、官民関係の多元化が進む中、規制行政機関はどのようにして自らの裁量を確保しようとしているか。国内外に広がる「規制空間」の構造は、それによりどのように変容しているか。木造建築、軽自動車、電気用品の安全に関する技術基準の設定、規制の実施過程を素材に分析しました。

    • 2016年4月刊行のこの論文集(ISBN: 9784832968257)には、2001年の中央省庁等改革における科学技術の省庁再編の研究成果が掲載されました。旧科学技術庁は、その一部が内閣府に引き継がれ、一部が旧文部省と統合されて文部科学省となりましたが、科学技術・イノベーション政策の「司令塔機能強化」が実現するかどうかは、今後の運用次第です。

    • 2018年7月刊行の地方創生に関する共同研究の成果です(ISBN: 9784000238953)。私はまず、北海道と四国の政策担当者への聞き取り調査の結果から、地方創生に地方分権と中央集権の両側面があったことを論じました。その上で、戦後日本の国土政策(東京一極集中の是正)と内閣主導の地方創生の推進体制などを比較することにより、今後の地方創生のあり方を検討しました。

    研究の内容

    「技術」は、地域・社会に大きな便益をもたらす反面、様々なリスクを孕んでもいます。したがって、そうした「技術」を社会に導入し普及させていく際には、そのリスクを軽減する行政システムを設計して、その社会的便益を最大化できる公共政策のあり方を考えていく必要があります。
    そうした公共政策について抱くイメージは、例えば自動車の事例でもメーカー、規制当局、そして我々ユーザーといった利害関係者で異なっていることが多く、また、規制は国際基準によって規定されていたりもします。
    そうした中で、「技術」の社会導入・普及の政策問題を丁寧に抽出してその全体像を俯瞰し、利害関係者が折り合える点を模索し、合意形成を図っていくとともに、官・民が手を携えて行政システムを構築し運営していく手法を考えます。

  • 腸内環境をパラダイムシフトするαディフェンシン

    医食同源の科学的理解から予防医療まで

    Paneth細胞が分泌するαディフェンシンは腸内細菌叢を制御し、排除と共生に深く関与する。食品、αディフェンシン、腸内細菌の三者が規定する腸内環境という視点から腸内環境を評価し、パラダイムシフトを興して疾病の機序解明や予防医療開発に繋げる。

    研究の内容

    単離小腸陰窩や三次元小腸上皮培養系であるエンテロイドを用いて、腸上皮細胞であるPaneth細胞の自然免疫 (αディフェンシン分泌)、腸内細菌との共生、再生・分化など多彩な機能に関わる分子機序を、共焦点レーザー顕微鏡やフローサイトメトリーなどの最先端分析手法を駆使して解明する。腸は生体において様々な臓器間ネットワークを形成しており、Paneth細胞の機能を中心に据えて腸内環境の仕組みを解析することで、腸内環境を制御することを可能とし、様々な疾病の予防策や治療法を創生する。腸からみれば「食」も「医薬」も同じであり、創生した知から産学・地域連携を通じて健康長寿社会の実現に貢献したい。

    綾部 時芳 名誉教授 Tokiyoshi Ayabe
    医学博士
    産学・地域協働推進機構
  • 免疫・癌細胞の機能制御剤およびバイオマーカー

    低分子核酸(microRNA)を使用して免疫細胞・癌細胞の機能を制御するとともに、被験者の免疫状態を判定する

    生体の免疫応答やがん細胞の増殖を制御するmicroRNAを提供します。核酸医薬として免疫体質の改善やがん患者の治療、また血清中のmicroRNAをモニタリングすることで、被験者の免疫体質を判定する新たなバイオマーカーとしても期待されます。

    研究の内容

    近年、がん免疫治療は著しく進展し、免疫チェックポンイント阻害剤は医薬品として上市された。一方、がん治療の臨床効果を高め、副作用の少ない安心・安全な治療を実施するには、被験者の免疫状態を判定するバイオマーカーが必要とされている。
    本研究で免疫応答の制御が可能、またはがん細胞の増殖を制御する新規microRNAを発見した。これらのmicroRNAは生体に直接投与し免疫体質を改善する核酸医薬や生体から加工・調製された免疫細胞に添加し機能調節する医薬品としても有望である。
    また、血清中のmicroRNAレベルをモニタリングすることで、がん患者の免疫状態を判定することも可能で、がん免疫治療による抗腫瘍免疫応答の評価や免疫系の異常亢進による副作用の予見ができ、治療法の選択の際に有用なバイオマーカーとしての利用が期待される。

    北村 秀光 准教授 Hidemitsu Kitamura
    博士(地球環境科学)
  • ペプチド・糖ペプチド環化技術

    水素結合制御によりペプチド環化効率を飛躍的に向上

    溶媒の水素結合ネットワーク形成に着目した反応系を活用することによりペプチド環化反応の効率化と難溶性ペプチドの溶解度向上を高次元で両立することに成功した。創薬や分子ツール設計に応用可能である。

    • 環状糖ペプチドの合成例、C2対称型に糖鎖を配向制御した(左)
      D-アミノ酸導入等により配座の自由度が制御可能である(右)

    研究の内容

    創薬等の生理活性化合物探索やライフサイエンスにおける分子ツール設計ににおいて環状ペプチドは、その配座安定性や配向性、対称性の制御などが容易であるため、理想的な基本分子となりうる。しかし、ペプチド環化は希薄条件や複雑な保護基戦略などを要していた。本研究では水素結合制御型溶媒システムと無塩基縮合剤システムを組み合わせることにより、難溶性のペプチド等でも高濃度条件下で効率的に環化できることを見出した。特殊な保護基戦略を必要としないことから応用範囲が広く、これまで様々な生理活性ペプチドや糖ペプチドの効率的環化に成功している。本技術を活用することにより、環状ペプチドの設計自由度と量産が容易となり、創薬やライフサイエンス用ツール開発が加速されることが期待される。

    比能 洋 教授 次世代物質生命科学研究センター 副センター長 Hiroshi Hinou
    博士(工学)
  • 量子暗号鍵配付装置の安全性保証技術

    究極の暗号の安全性を実験的に保証する

    量子暗号鍵配付を用いることで将来いかに技術が進歩しても高度な秘匿性を保つ暗号鍵を光通信により共有できます。本研究は、量子暗号の実用化に向け、実際に作られた装置で安全性を実験的に保証するための技術を提供します。

    • (量子暗号鍵配付装置の構成と安全性保証のためのチェック項目)

    • (実際の量子暗号鍵配付装置)

    研究の内容

    量子暗号鍵配付は原理実証の段階をクリアし、実用化を意識した研究が進められています。究極の秘匿通信を実現する技術として、世界各地で実証実験を含む研究が進められています。当研究室では理論的な部分と実装に関わる部分を同時に研究しています。現実世界では理論通りにいかないことが多く、仮説と実験結果とのズレが生じることが多々ありますが、そのズレの影響を評価し、現実の装置で作られる暗号鍵の安全性を定量的に保証することを目指しています。そのため、理論的な研究と実際の装置開発を橋渡しする形で実証研究を行っています。この研究によって量子的な装置を測定、評価して現実化することが可能になり、将来の量子ネットワークの実現に寄与できるものと考えています。

  • 聞き取り調査によるまちづくり・環境保全

    多様性を生かした合意形成へ

    ソロモン諸島、宮城、北海道でのフィールドワークから、自然と地域社会との関係について研究しています。環境保全やまちづくりをボトムアップで進めていくための研究や実践を行っています。東日本大震災後は宮城県石巻市で復興支援を兼ねた研究を行っています

    研究の内容

    「聞く」ことを政策や活動に生かす研究を行っています。地域の人たちと研究者・学生が協働で地域の人びと、自然、歴史、文化、社会問題について調べ、課題を抽出する、解決策を考える、あるいは、これからの地域像を考える。そのためのツールとしての聞き取り調査や聞き書きという手法の実践・応用を行っています。従来の量的調査(統計やアンケート調査)やワークショップなどでは見えてこなかったものを可視化し、また信頼関係を構築するものとしての質的調査(聞き取り、聞き書き)の可能性を研究しています。

    宮内 泰介 教授 Taisuke Miyauchi
    博士(社会学)